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Abstract

We discuss multiclass-multilabel classification
problems in which the set of classes is extremely
large. Most existing multiclass-multilabel learn-
ing algorithms expect to observe a reasonably
large sample from each class, and fail if they re-
ceive only a handful of examples per class. We
propose and analyze the following two-stage ap-
proach: first use an arbitrary (perhaps heuris-
tic) classification algorithm to construct an ini-
tial classifier, then apply a simple but principled
method to augment this classifier by removing
harmful labels from its output. A careful theo-
retical analysis allows us to justify our approach
under some reasonable conditions (such as label
sparsity and power-law distribution of class fre-
guencies), even when the training set does not
provide a statistically accurate representation of
most classes. Surprisingly, our theoretical anal-
ysis continues to hold even when the number of
classes exceeds the sample size. We demonstrate
the merits of our approach on the ambitious task
of categorizing the entire web using the& mil-

lion categories defined on Wikipedia.

Introduction

In multiclass-multilabel classification, the goal is toigss

one or more labels to each instance in an instance spac

Each label associates an instance with oné @ssible

classes. An example of a multiclass-multilabel problem i
document categorization, which is the problem of associat-
ing each documentin a corpus with one or more topics (e.gs.
McCallum, 1999). Multiclass-multilabel problems are also
common in other fields, such as computer vision (Boutell
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et al., 2004) and computational biology (Barutcuoglu et al.
2006). If a training set ofn labeled examples is avail-
able, a multiclass-multilabel classifier can be learnedgisi
a supervised machine learning algorithm. Typically, learn
ing algorithms for multiclass-multilabel problems are de-
veloped and analyzed under the assumption thatheld
constant asn grows. In this paper, we consider a dif-
ferent version of the multiclass-multilabel problem, wder
the set of classes grows with the number of examples (i.e.
k > Q(m)). For example, this situation occurs when the
set of classes iskolksonomya set of classes that emerges
from a collaborative tagging or a social tagging scheme.

The concrete problem that motivates this work is the prob-
lem of categorizing the entire web using the categories de-
fined by the Wikipedia website. At the bottom of every
Wikipedia article there is a short list of categories, and we
define our set of classes to be the union of these lists. The
Wikipedia articles themselves can be used as training ex-
amples, since they are labeled web pages. When new arti-
cles are added to Wikipedia, they often introduce new cat-
egories. At the time of writing this paper, Wikipedia con-
tains 2.9 million articles and almost 1.5 million categerie

The Internet provides many other examples whegeows

with m. For instance, photo sharing websites allow users
to annotate their photos with keywords. The implied clas-
sification task is to recommend keywords whenever new
photos are uploaded. Assuming that the site does not im-
pose any restrictions on the keywords that may be used, the
set of distinct keywords is likely to grow as more and more
photos are uploaded to the site.

Ebr such datasets, applying standard techniques is preblem
atic for two reasons: First, sinde scales withm, many
classes occur only a handful of times in the training set,
0 we do not have a statistically reasonable sample from
each class; Second, the concrete valuesoand k& we
deal with are very large, to the point that most existing
multiclass-multilabel learning algorithms become compu-
tationally intractable. For example, the most common ap-
proach to multiclass-multilabel learning is to train a sep-

have in mind, such an approach is both statistically un-
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tenable (due to the small number of examples per clasghe validation set. Intuitively, the categoPgople Born in
and computationally impractical (as it requires maintagni  1756is incompatible with the click-graph based metric we
millions of hypotheses for all the classes). Similar prob-have chosen, namely, our metric is unlikely to put differ-
lems are encountered for other standard approaches, sueht web pages from this class in close proximity to each
as those based on ranking (e.g. Amit et al., 2007; Crammagther. In this situation, our label-pruning method removes
and Singer, 2003; Lebanon and Lafferty, 2002). this class from the set of classes the classifier is allowed to

In practice, the only realistic solution is to turn to much output.

simpler classification algorithms, such as nearest neighbd/NVhile our method is simple and straightforward to im-
methods. For example, consider once again the problem gflement, its analysis is quite tricky, since it is based on
categorizing the entire web using Wikipedia categorieg, an premises that might initially appear to be statistically un
assume that we have access to the log of an Internet searabceptable. After all, our basic assumption is that most
engine. We can use the log to constructiek graph a bi-  classes are very rare, so the decision to drop a label may be
partite graph whose vertices include all web pages and albased on statistically insufficient evidence. Say that vee se
gueries ever issued to the search engine. An edge is drawwo false-positives and one true-positive of a given class
between a quergy and a web pag#’ if enough users is- in our validation set: can we confidently decide to remove
sued the query) and then clicked ofl’. We can use the labels based on this empirical evidence? The key to the
graph distance induced by the click graph to define a metformal analysis of our technique is to think of its overall
ric over web pages. Given a set of labeled Wikipedia pagesffect rather than considering its effect on each individua
we can label the entire web using a nearest neighbor typelass. Indeed, we cannot conclusively evaluate each class
algorithm over this metric. In other words, labels are prop-and our technique will most certainly mistake some good
agated from the labeled Wikipedia pages along the edgedasses for bad ones. Nevertheless, we can show that our
of the click graph to the rest of the web. Such simple algo{runing criterion removes more bad labels than good ones,
rithms can be implemented in a way that is almost entirelyand overall improves the accuracy of our classifier, under
insensitive to the number of classes, but their simplicity o mild conditions that often hold in practice. Concretely, we
ten comes at the cost of lower classification accuracy. assume that the class frequencies follow a power-law dis-

. . ... _tribution and that every example only has a rather small
One way to improve the accuracy of a simple classifica-

tion algorithm is to refine its output with a separate post_number of labels.
learning step. Taking such a two-stage approach is comfo our knowledge, our theoretical approach is unique
mon in other areas of machine learning. For example, irand quite distinct from previous analyses of multiclass-
ranking problems it is common to run a simple and fastmultilabel learning algorithms. Most previous such analy-
algorithm to obtain an initial ranking, and then to run a ses build on techniques originally developed for the analy-
more accurate re-ranking algorithm only on the top few re-sis of binary classification algorithms, and therefore neqju
sults. In this paper, we focus on a post-learning step thaat least some degree of class-wise convergence.
modifies a classifier by pruning certain labels from the out-, . . : .
S e : We conclude our paper with a set of experiments, in which
put. In other words, the original classifier associates an . o
: . . we validate our approach on the task of categorizing web
instance with a set of classes and the post-learning ste(i

. . T . pages using the set df5 million Wikipedia categories.
deletes certain classes from this set. The intuition behindo9<> YSIN9 P 9
i . ) . . he simplicity of our approach enables us to perform these
this approach is that in such massive multiclass-multllabe . . . .
Xperiments on a single server, without requiring a large

datasets many classes are inherently hard to learn, and a?tl-
. . cfuster computer.

tempting to predict them decreases the overall accuracy o

the classifier.

We propose and analyze, both theoretically and experiRelated Work

mentally, a simple label-pruning method. The method is

based on comparing the number of true-positives and falsefhe work in (Zhang, 2004) deals with multiclass classifica-
positives in each class, and discarding classes where-the réon and bears similarities to our work; in that the space of
tio of true to false positives exceeds a certain threshadd. R possible classes can be very large compared to the size of
turning to the example of categorizing the web, the initialthe dataset. However, the analysis there is specific to mul-
nearest neighbor algorithm is likely to find that many webticlass rather than multiclass-multilabel learning (ieach
pages on classical composers turn out to be close neighbofstance is assigned only a single label), and focuses on
of the Wikipedia article orMozart The nearest neighbor large margin classifiers with a particular rule for choosing
classifier indiscriminantly assigns all of the Wikipedia-ca the label of each instance.

egories that are associated with the art_icleM:rzartto aI_I A more closely related paper is (Hsu et al., 2009), which
of these pages. One of these categond%ep!g Bornin - 450 deals with massive multiclass-multilabel classifica-
1756 which is likely to have many false positives acrossyon |t proposes a clever method, where a predictor is
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trained on a compressed representation of the originall labeet oflabel pruning rules A label pruning rulepy corre-
vectors. The original labels are reconstructed using techsponds to an elemegite {0, 1}*, andypy (y) is the vector
nigues from compressed sensing. The problem setting arm@sulting from removing the labels representedybffom
some of the assumptions made (such as label sparsity) atiee set of labels represented pySuch rules are simple to
similar to our work. However, the approach of (Hsu et al.,implement and are particularly useful in massive multilabe
2009) applies only to learning algorithms that regress on @roblems, where many labels are both inherently noisy and
real-valued compressed label vector. This is often not theeryrare. In such cases, refraining from predicting thase |
case with algorithms designed for massive datasets, such asls can actually improve the final classifier’s performance
the click-graph based approach described earlier.
trast, our approach makes no assumptions about the
ing algorithm.

n ZZ?The four basic quantities we work with are the risk and
the empirical risk ofh and of p o h. Letting S denote
an i.i.d. sample of sizen from D, we define thenitial

) ) empirical risk By = 1/m 3} ,1est(h(x),y), theini-

2 Setting and Notation tial risk Ry = E(x.y)[¢(h(x),y)], thefinal empirical risk

eg 1/mY eyyes L o h(xi),y), and thefinal risk

o = Exy)[¢(¢ o h(x),y)]. Our goalis to find a pruning
rule ¢ such thatR,, is as small as possible.

We assume that the learning task at hand is a supervis
multiclass-multilabel problem. Formally, It be an ar-
bitrary measurable spac®, = {0,1}*, and letD be an
unknown distribution on the product spagex ). Each  For the analysis, we need to describe these quantities in an
element(x,y) in this space is composed of an instancealternative form, as specified in the following easy-tovgro

x and a label vectoy, which is a vector of indicators lemma:

= (y1,...,yx) that specifies which classes are associ| a;nma 1. For a given classifief(-), define
ated withx. We assume that label vectors sampled from
D aresparse namely, thatr(}".y; < s) = 1 for some . 1—v
A J ] ) pgu—— Z j_yj_l)
constants. A classifier is a functiorh : X — Y, that

maps an instance to a label vectoly = h(x). We re- 5
strict our discussion to classifiers that output sparsel labe  p; 10 = — Z 1(h(x); =1,y; =0)
m

vectors, namely . ; < s. We evaluate the accuracy of a (x,y)€S

classifier using a loss functiaiih(x),y), which measures . 1

the disparity between the predicted label set and the actual ~ Pi# = (1= U(h(x); =0,y; = 1)
label set. In this paper, we focus on a simple weighted loss (xy)€S

function that is parameterized bye (0, 1) and defined as +y1L(h(x); =1,y; =0).

r Letp; +,pj.11, andp; 10 be the expected values (over the

s 2(1_7) U(g; = 0,y; = D+y1g; = Ly; = 0), (1) sampleS) of 5 +,p; 11, andp; 10 respectively. Also, for
=t a fixed pruning rulep(-), let 1L(labelj pruned be an in-
where 1(-) is the indicator function. The parameter dicator that equalsl if and only if the pruning rulep(-)
controls the importance of false negatives vs. false posremoves labej. Then it holds that
itives, and the normalization by ensures that the loss
is always bounded if0, 1]. Our ultimate goal is to ob- i k
tain a classifieth with a small risk, which is defined as Ro = ij #, Bo= ij #5
= s

IE(x y)ND[é(h(X)v)I)]' &

We distinguish between two phases of the learning Prof, — Z (p7 ~ + T (label j pruned) (p;11 — p; 10))’
cess. In thdearning phasewe use some learning algo- = ’
rithm to obtain aninitial classifier h. We then perform a k

post-learning phasevhere we find dabel transformation 1 p;.+ + 1(label j pruned) (p D )
functiony : ) — Y, such that the final classifier is the s Z ( 7 ) (Pgan = Pja0)

compositiony o h. In this paper, we focus on the post-
learning phase, and make no assumptions on the Iearnlrg] The Pruning Method
phase or on the quality of the initial classifier. From the
perspective of the post-learning phase, the initial clessi
h is simply a predefined function. For simplicity, we as-
sume that the data used to trains independent from the
data used in the post-learning phase to train

Recall that our goal is to reduce the final riBk. The ex-
pression forR,, given in Lemma 1 suggests thAt, can be
reduced by removing those labels for whichio > pj 11.
Unfortunately,p; 11 andp; 1o are unknown quantities that
In principle, the label transformation functigncan be ar-  depend orD, and we must resort to using their empirical
bitrarily complex. In this paper, we focus on the simple counterpart; 1 andp; 0. Specifically, our simple label
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pruning procedure proceeds as follows: given a sarfiple It can be shown that whem, k& — oo but (say)m/k = 3,
calculatep; 11 andp; 10, and choose the label pruning rule the right hand side above converges to a strictly positive
 that removes all labels for whighy 11 < pj,10. In other  constant. Therefore, it is possible that our lower bound
words, this procedure prunes any label for which the ratiowill remain larger than some positive constant regardless
of false positives to true positives exceéds- v)/v. No-  of sample size, which implies thﬁtp does not converge to
tice that this makes a random function that depends on R,, in such cases.

the randomness of the samgfle For the theoretical anal-
ysis, it will be convenient to view?,, and R,, as random
variables, which depend on the random drav$ of

This observation precisely captures the difficulty of work-
ing with a sample that does not sufficiently represent many
of the individual classes in the problem, and is the rea-
This algorithm essentially attempts to decrease the finadon why most existing algorithms are inadequate when the
empirical risk R, in lieu of R,. However, notice that in number of classes is not fixed. Nevertheless, we can show
our setting (where: scales withm), we cannot assume that it is possible to analyze the behavior®f directly.

that each and every; 11,p;,10 iS an accurate estimate of Specifically, we prove thak, is well behaved when the
pii1,Pj10- Infact, our analysis shows thﬁ't‘a is generally  training set is large enough, even whers very large and

not a good estimator of?,,. Nevertheless, we can prove grows withm. Namely, although the empirical quantities
that our method reduces the final riBk, compared to the do not necessarily correspond to their expected values, we
initial risk R, with high probability, under mild conditions. can still provide high probability guarantees that our prun
ing method reduce the overall risk of the classifier. In a
nutshell, the analysis consists of proving thag — E[R, ||

is small with high probability (where the expectations are
taken over the random draw of the samg)e and then di-
rectly proving thatf[ R, ] is strictly smaller tharRR,, under
$ild conditions.

4 Theoretical Analysis

Our pruning procedure works by making the empirical risk
R, as small as possible. In this section, we show that thi
is also likely to makeRk,, smaller thank,. The straightfor-
ward theoretical approach would be to show that for rea-The first part of the proposed approach is formalized in
sonably large samplef{o is close toR, andf{(p is close  the following theorem. Informally, it states that when
to R,. While the first premise is easy to show via a largeis large enoughR,, is arbitrarily close to its expectation
deV|at|on inequality, it turns out that,, does not necessar- With arbitrarily high probability. Note that this bound doe
ily converge toR,, when the number of classes grows with Not depend at all ok, the number of classes.
the number of examples This is implied by the following Theorem 2. For any fixede > 0, it holds that
theorem and the discussion which follows. Its proof is a

+m?/3 exp (—m2€))

. Lo . . —1/6+e
simple consequence of the definitions, and is omitted duepy (|R¢ ~E[R,]| > 2m

to lack of space. (1 =7)
Theorem 1. E[R, — R,] is lower bounded by < 2sm**exp (-m*),
1 The proofis presented in the appendix. Intuitively, theaide
S ZPr(labelj pruned)(pj,11 — Pj,10)- is to distinguish between labels for whi¢hy; 11 — pj.10]
j=1 is large, and labels for which this difference is small. The

first type of labels are more common in the data, and thus

If we were to assume thdt is fixed, we might expect we can reliably estimaig; 1, —p; 10 and decide whether to
Pja1,Pj.10 to converge te; 11, pj 10 Uniformly for all j = prune them or not. On the other hand, there cannot be too

., k. Since our method prunes labels for whigh; <  many such labels, becau$¢; p; 11 + pj,10 is @ bounded
Pj.10, we would have thabr(labelj pruned(p; 11 — pj,10) guantity. This effectively limits the dimensionality ofeh
converges to a non-positive quantity uniformly for ajjy ~problem regardless of the parameteWhenevetp; 11 —
and thus our lower bound would converge to a non-positive;,10| is small, the pruning process is noisy and prone to
number. However, when we assume thajrows withm,  errors, but it can be shown that these cases do not influence
Pj.11, ;10 need not converge uniformly 911, pj 10, and R, too much. A careful formalization of these ideas, using
the correlation betweeRr(label j pruned) and the sign  Bernstein and McDiarmid’s large deviation bounds, allows
of (pj.11 — pj,10) can remain weak regardless of the sampleus to show thaf?,, concentrates around its expectation with
size. To give a concrete example, if we take- 1/2,s =  high probability, regardless af.
10 and assume that; 11 = s/3k,p;.10 = s/6k for all j,

Next, we need to show thdt, — E[R ] is strictly positive,
then we have by the theorem above that o L] yp

to prove that our method indeed reduces the final risk. It
turns out that the exact value & — E[R,] is highly de-

k
E[R, — R i E r(label;j pruned. pendent on the specific values @f;; andp; 1o for each
® 6k J . L. . . ’ ’
= J. Intuitively, if labels for whichp; 10 > p; 11 are pruned
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with high probability and labels for which; 10 < p; 11 faster thank2—". In particular, ifr > 1 (which happens
are pruned with low probability, we expeB} — E[R,|to  quite often in practice, including in our experiments), we
be large. Although it is possible to provide positive lower obtain the interesting result that the lower bound remains
bounds onR, — E[R,] in terms of these quantities, they meaningful, even when the number of clasgegrows

are not particularly enlightening. Instead, the theorem befaster than the number of examples

low will allow us to characterize a mild condition, under

which we can exped®, — E[R,] to be strictly positive. A g Experiments

proof appears in the appendix.

Theorem 3. The difference?, — E[R,] is at least We applied our technique to the task of categorizing
. web pages using thé.5 million categories defined in
1 1 Pji1 + Pjio0 +pg 10 Wikipedia. As mentioned in the introduction, we first used
s 2 (o mn) =03 h engine | lick graph, which is a bi
S i i et search engine logs to create a click graph, which is a bipar-

tite graph between queries and web pages. A link between
Moreover, if we assume that; 1o + p; 11 are sorted in  query@ and web pagél’ indicates that a sufficiently large
descending order, and there exists somé& 2 such that number of users issued the quepyand then clicked on
Pr(h(x); =1) < O(j ") forall j, thenkRy — E[R,]isat the link to pagelV’. Next, we randomly split the set of

least Wikipedia articles into three set50% training,30% vali-
dation, and20% test. Each Wikipedia article is associated
1 Jemax{2—r,0} . . .
z Z (pjio — pjan) — O ) with a set of categories and also corresponds to a node in
8 iipitoSpin 7 ’ m the click graph. Next, we propagated the categories from

each Wikipedia training article along the edges of the click
graph, to all of the web pages that have a query in common
with that article (namely, to all web pages whose distance
to the training article i®). We call the resulting labeling
What does this theorem tell us? The non-negative ternpf the weblabeling A The rationale behind this labeling
> jpsa0>ps0 (a0 — Pj11) can be arbitrarily small, but  procedure is the assumption that two web pages that were
we can expect it to be lower bounded by a positive constanglicked on (by different people, at different times) aftee t
(Independent ofn /{) if a fixed fraction of the labels are same query are ||ke|y to share many t0p|Cs_ Next, we prop-
such thap; 10 > pj,11, and ifpj 10 — pj,11 is proportional  agated the categories along the edges of the click graph a
to p;j .10 + pj,11. SO we turn our attention to the term second time, extending the reach of each category to all
pages with graph distangefrom the original article. We

k
1 Z [P+ Pjio call thislabeling B
Rt m ’

We repeated the process described above a second time,
this time seeded with a larger set of labels per Wikipedia
training article. We used the fact that Wikipedia categorie
are themselves categorized by higher-level categories. Fo
example, the Wikipedia article ddogsis associated with

the categonppomesticated Animalsnd the latter is asso-
ciated with the categoranimals We added all of these
second-order categories to each Wikipedia article. We
propagated the extended category sets along the edges of
the click graph as before, to obtaiabeling C We then
performed a second iteration of label-propagation to obtai
labeling D.

The requirementthat = 2 is for technical reasons and can
easily be treated separately.

which can indeed be large in the regime whieseales with
m. For example, ip; 11 + p;10 = s/k for all j, the above
equals,/k/sm > (1), and Thm. 3 may become vacuous.
Luckily, assuming thap; 11 + p;.10 iS equal for allj is un-
realistic. By definitionp; 11 + pj,10 is upper bounded by
Pr(h(x); = 1), or the probability that our learned hypoth-
esis labels a random instance with lapelf the marginal
class distribution of the classifier is similar to the maggin
class distribution of the data, then this distribution is of
ten observed to follow aower law which corresponds to
the assumption thdtr(h(x); = 1) < O(y~") for all j.
Under this assumption, we obtain the second statement iWe applied our label-pruning technique independently to
Thm. 3. This power-law behavior, sometimes known aseach of the four initial labellings. Namely, we revealed
Zipf's law, is a very well known and well documented phe- the true categories of the Wikipedia validation articled an
nomenon for many rank vs. frequency datasets (see exammempared them to the propagated labels in the four versions
ples in Manning and Schitze, 2002; Adamic and Huber-of our experiment. For each class we counted true and false
man, 2002; Gabaix, 1999), and in particular for the appli-positives, and decided which labels to prune.

cations we have in mind. We verify this property in our

. The set of Wikipedia categories is problematic in that it is
experiments, presented below.

over-complete. Many categories have duplicates or near-
Overall, this lower bound implies that if we let, & — oo, duplicates; some articles are labeled by one category while
we can expecR,—E[R,] to be positive wheneven grows  other articles are labeled by its near-duplicate category.
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Figure 1:Ratios between the best attainable test loss and the tesdttagned by three different techniques, on four initiElings.

Also the false-positives in all four labellings significent  A; r» ~ 1.6 for labeling B; » ~ 1.9 for labelingC’; and
outnumber the true-positives. For these reasons, false-~ 2.3 for labelingD.

positives should be treated with great suspicion. When we

see a false-positive, either our classification is wrongper t

Wikipedia editor may have simply neglected to add this6 Conclusions

category. Spot-checking reveals that many false-positive

are actually quite reasonable. On the other hand, falsey, ihis paper, we studied the problem of massive multiclass-
negatives should always be taken seriously: a human editqf jiilabel learning, where the set of classes scales with th
explicitly added a category to the article and our algorithmpmper of available training examples. This setting is very
concluded that it is not relevant. To correct this imbalance .o jevant when the set of classes results from a collaberativ
we sety in Eq. (1) to give more weight to false-negatives. 154qing scheme, such as Wikipedia categories or keywords
Specifically, we sef to values betwee.01 ando.1. in media hosting websites. In this regime, the standard

After using the validation set to identify and remove harm-assumption of a fixed set of classes is too simplistic, and
ful labels, we revealed the categories in the Wikipedia tesstraightforward generalizations of methods for binargcla
set, and evaluated the performance of our algorithm. Fogification (such as multiclass SVM) may be impractical.

each of the four labellings and for each valueyofve also  \1otivated by the computational issues faced by practition-
calculated amraclepruning which provides a lower bound (s in this area. we proposed and analyz@ost-learning
onthe test loss of any possible pruning algorithm. This Wasnethod on top of any desired learning algorithm, which
done by cheating and finding the best pruning on the teslo; o purposes can be treated as a black-box. Our ex-

set (in terms of each-weighted loss). The loss attained by eriments demonstrate that the method works quite well on
the oracle varies greatly with, so itis meaningless to plot (a51.world large scale data.

absolute loss values for different values~obn the same

figure. To get a coherent visualization of our results, weTheoretically, this setting poses a challenge, since we can
plotted the ratio between the oracle loss and the loss of outot hope to get a lot of data on each and every class.
algorithm. The performance of our algorithm is shown inAs far as we know, this setting violates the assumptions

solid lines in Fig. 1. Values close toindicate that our test underlying most previous theoretical work on multiclass-
loss is very close to the loss of the ideal pruning_ multilabel Iearning. Nevertheless, a careful analysMI

us to justify our approach, using some non-trivial but mild

For comparison, the plots in Fig. 1 also show the perforicient conditions, such as sparsity of labels per iretan
mance of two other simple algonthms: The first is th.e."?‘l'and a power-law behavior of the class frequencies.
gorithm that performs no pruning and just keeps the initial

labeling. The second is an algorithm that uses our methodVhile our approach seems to work in practice, and has
to determine how many labels to remove, and then remove§ome interesting theoretical properties, the algorithm we
labels randomly. These experimental results clearly showiave focused on is obviously a very simple one, and sev-
the amount of improvementachieved by our a|gorithm_ De.eral extensions |mmed|ate|y come to mind. One direction
spite the statistical challenge of generalizing with only ais to utilize additional knowledge about class dependen-

handful of examples per class, our algorithm performs vengi€s, rather than treating each class separately. Also, we
well across a wide range of have dealt only with very simple label transformation rules

. _ ) m . which prune a subset of labels (i.e. “if labélappears, re-
Finally, using a simple least-squares fitting technique, wg,,ve it"). However, it is possible to envision more com-
validated that all four datasets satisfy the power-law aSplex rules, such as “if labeld and B appear, but not label
sumption u;ed in our theoretical analysis (see Thm. 3 an@, replace labeD by label E”. Understanding how to im-
the discussion which follows). Namely, when we sort the,jement these extensions effectively and in a theoregicall
classes by frequency in the data, we see that the frequengysiified manner, even when there are as many classes as
of classy; is proportional toj~", with  ~ 1.3 for labeling examples, remains a topic for future research.
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Let ¢ > 0 be another parameter to be determined later. If
A.1  Proof of Thm. 2 c((1 = ¥)pj1 +vpj10) < |pj10 — pja1l, we can upper

boundg(m,p;11,p:.10) b
We need the following two lemmas. The first lemma fol- g(m. P11, Pi.10) bY

lows directly from Bernstein’s inequality (see for instanc me?((1 —¥)pji1 + vpii0)?
(Boucheron et al., 2004)). We note that using an inequal- &2 ( 2((1=)psa1 + P50+ [Py - pj.,n|/3>) |

ity that relies on variance is crucial to obtain a non-tiiivia

bound with our proof technique. The second lemma fol-Dividing the numerator and denominator of the fraction in
lows directly from the definitions. The proofs are omitted the exponent byl — +)p; 11 + vyp;,10, @and using the easily
due to lack of space. verified fact that for anys > 0,6 > 0,v € (0,1) it holds
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that|a — b|/((1 —v)a +~b) < 1/(v(1 —v)), we getthe For anyj, if p; 10 — p;,11 > 0, we have by Lemma 2 that
upper bound Pr(pj10 > pj,11) is lower bounded by

me?((1 = y)pji1 +pji0 10 — pj11)?
ex <_ 2(((1 n 1/)31(1 = )> @ 1o (_ e )
v =7 2((1 =y)pj0 +pja1) + pjao — piaal/3
On the other hand, we always have -1 ( m(pj 10 — pj,11)2 )
— ex — ;
- P\ 20500 + pin + 010 +0511)/3)

| 1(pj,10 > Pjar) — Pr(pjao > pju)| <1 (5) 5
_ . _ _ 3m(pj 10 — pj11)
with probability 1. Applying Eq. (4) and Eq. (5) on the =1—exp| — 80+ pin) )
second line of Eq. (2), we get a probabilistic upper bound P10 R
for it, of the form If pj10 — pj1n < 0, we have by Lemma 2 in a similar

T [pj,11 — Pj0] exp _me (1= )pjm +9pia0))  MANNET that
s 2(14+1/3v(1 — 7))

. 3 o —pa11)?
J€J21 Pr(p;10 > Hija1) < exp (_ m(pj,10 — Pj11) ) .
1 ' ' 8(pj10 + pj11)
+ - Z Ipj11 — pj10l, (6) o _
% jeTan Substituting these results into Eq. (8), we get thgt—

P E[R,] is lower bounded by
wheredyy = {j € Jp 1 ¢ < gt} andJy o =

{j € J2\ Ja1}. By a union bound, Eq. (5) holds with 1 Z

probability at least (Pj10 = pj11)

Jipj10>Pj11

me?((1 = 7)pj11 +vpj,10) k )
1-— g exp <— J: J: > . (D 1 ( 3m(pj10 — pj11) )
_ - - E 10 — pj11]exp [ — .
jen 2(1+1/37(1 = 7)) s IPsa0 = Pjaafexp 8(pj,10 + pj11)

j=1
We now make four observations. First, by Lemma 3, (9)
>_j|pjia1 —pja0l < s, so there can be at mosta labels o )
jsuchthatp, 11 — pj10| > o. Second, it is easy to verify In _order to upper bqund the second line in the expression
that if [p; 11 — p;.10| > o (which holds for anyj € J.1), (w_nth something which does not erendmO - Dj 1),
then(1 — y)p;11 + vpj10 > ay(l — 7). Third, forany itis enough to upper bound for anjthe expression
J € J2.2,pja1 —pjo0l < e((1—=7)pja1+7pj10). Fourth, 3m(p; 10 — pji1)>
Zjer,2((1 —Y)pj11 +vpj10) < s by Lemma 3 and the max  |pji0 — pja1| exp (_ Dj,10 — Pj11 ) .
fact thaty € (0,1). Applying these four observations on 7777511 8(pjr0 +pin)
Eq. (6) and Eq. (7), we can weaken this bound to the form

For that, it is sufficient to find the maximal value of the
1 mc2ay(1 — ) function f(z) = x exp(—3ma?/8p), wherep := p;11 +
o P~ 21+ 1/3v(1— 7)) +e pj.10, foranyz € [0, pl. It can be verified that this function

. . - is maximized atz = /4p/3m. Substituting this value for
which holds with probability of at least [pj10—pj,11] i Eg. (10), we get an upper bound of the form

L8 mcay(1 —7) V4(pj10 + pji1)/3mexp(l). Substituting this bound in
AP\ T 20+ 1/39(1— 7)) Eq. (9), and simplifying by noting tha{/4/3 cxp(1) ~
To get the theorem statement, we combine this with theo'7 < 1, we get the required lower bound
bound in Eq. (3), substitute into Eq. (2), choase=

k
* ) 1 1S ot
m=2/3,6 = sm?/3 exp (—m?**) (for somee > 0), let 3 g (pj,10 — Pja1) — 3 E w
i=1

JiPj,102Pj5,11
2(0+1/3v(1 —
c = m—1/6+e\/ ( /37( 7))

v(1=7) ’ on Ry — E[R,]. To derive from it the second inequality
in the theorem, notice that under the assumptions stated
i i ifi i k k :
and perform some straightforward simplifications. O there,>7_ | /Pii1 T Pito < D51 /Pr(h(x); = 1) is
at mostC Zle §~7/? for some constanf’. This sum is

A.2 Proofof Thm. 3 Ok ="/2)if r < 2,0(log(k)) if r = 2, andO(1) if r > 2.

We have thaRR, — E[R,] equals Ignoring the case: = 2 for simplicity, we upper bound
the different cases b (v kmax{2-7.0}) "and the inequality
1< ) ) stated in the theorem follows. O
3 Z(pj,lo —pja1) Pr(pj1i0 > Pj11). 8

j=1



