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Abstract

We discuss multiclass-multilabel classification
problems in which the set of classes is extremely
large. Most existing multiclass-multilabel learn-
ing algorithms expect to observe a reasonably
large sample from each class, and fail if they re-
ceive only a handful of examples per class. We
propose and analyze the following two-stage ap-
proach: first use an arbitrary (perhaps heuris-
tic) classification algorithm to construct an ini-
tial classifier, then apply a simple but principled
method to augment this classifier by removing
harmful labels from its output. A careful theo-
retical analysis allows us to justify our approach
under some reasonable conditions (such as label
sparsity and power-law distribution of class fre-
quencies), even when the training set does not
provide a statistically accurate representation of
most classes. Surprisingly, our theoretical anal-
ysis continues to hold even when the number of
classes exceeds the sample size. We demonstrate
the merits of our approach on the ambitious task
of categorizing the entire web using the1.5 mil-
lion categories defined on Wikipedia.

1 Introduction

In multiclass-multilabel classification, the goal is to assign
one or more labels to each instance in an instance space.
Each label associates an instance with one ofk possible
classes. An example of a multiclass-multilabel problem is
document categorization, which is the problem of associat-
ing each document in a corpus with one or more topics (e.g.
McCallum, 1999). Multiclass-multilabel problems are also
common in other fields, such as computer vision (Boutell
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et al., 2004) and computational biology (Barutcuoglu et al.,
2006). If a training set ofm labeled examples is avail-
able, a multiclass-multilabel classifier can be learned using
a supervised machine learning algorithm. Typically, learn-
ing algorithms for multiclass-multilabel problems are de-
veloped and analyzed under the assumption thatk is held
constant asm grows. In this paper, we consider a dif-
ferent version of the multiclass-multilabel problem, where
the set of classes grows with the number of examples (i.e.
k ≥ Ω(m)). For example, this situation occurs when the
set of classes is aFolksonomy, a set of classes that emerges
from a collaborative tagging or a social tagging scheme.

The concrete problem that motivates this work is the prob-
lem of categorizing the entire web using the categories de-
fined by the Wikipedia website. At the bottom of every
Wikipedia article there is a short list of categories, and we
define our set of classes to be the union of these lists. The
Wikipedia articles themselves can be used as training ex-
amples, since they are labeled web pages. When new arti-
cles are added to Wikipedia, they often introduce new cat-
egories. At the time of writing this paper, Wikipedia con-
tains 2.9 million articles and almost 1.5 million categories.

The Internet provides many other examples wherek grows
with m. For instance, photo sharing websites allow users
to annotate their photos with keywords. The implied clas-
sification task is to recommend keywords whenever new
photos are uploaded. Assuming that the site does not im-
pose any restrictions on the keywords that may be used, the
set of distinct keywords is likely to grow as more and more
photos are uploaded to the site.

For such datasets, applying standard techniques is problem-
atic for two reasons: First, sincek scales withm, many
classes occur only a handful of times in the training set,
so we do not have a statistically reasonable sample from
each class; Second, the concrete values ofm and k we
deal with are very large, to the point that most existing
multiclass-multilabel learning algorithms become compu-
tationally intractable. For example, the most common ap-
proach to multiclass-multilabel learning is to train a sep-
arate binary classifier for each class. For the datasets we
have in mind, such an approach is both statistically un-
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tenable (due to the small number of examples per class)
and computationally impractical (as it requires maintaining
millions of hypotheses for all the classes). Similar prob-
lems are encountered for other standard approaches, such
as those based on ranking (e.g. Amit et al., 2007; Crammer
and Singer, 2003; Lebanon and Lafferty, 2002).

In practice, the only realistic solution is to turn to much
simpler classification algorithms, such as nearest neighbor
methods. For example, consider once again the problem of
categorizing the entire web using Wikipedia categories, and
assume that we have access to the log of an Internet search
engine. We can use the log to construct aclick graph, a bi-
partite graph whose vertices include all web pages and all
queries ever issued to the search engine. An edge is drawn
between a queryQ and a web pageW if enough users is-
sued the queryQ and then clicked onW . We can use the
graph distance induced by the click graph to define a met-
ric over web pages. Given a set of labeled Wikipedia pages,
we can label the entire web using a nearest neighbor type
algorithm over this metric. In other words, labels are prop-
agated from the labeled Wikipedia pages along the edges
of the click graph to the rest of the web. Such simple algo-
rithms can be implemented in a way that is almost entirely
insensitive to the number of classes, but their simplicity of-
ten comes at the cost of lower classification accuracy.

One way to improve the accuracy of a simple classifica-
tion algorithm is to refine its output with a separate post-
learning step. Taking such a two-stage approach is com-
mon in other areas of machine learning. For example, in
ranking problems it is common to run a simple and fast
algorithm to obtain an initial ranking, and then to run a
more accurate re-ranking algorithm only on the top few re-
sults. In this paper, we focus on a post-learning step that
modifies a classifier by pruning certain labels from the out-
put. In other words, the original classifier associates an
instance with a set of classes and the post-learning step
deletes certain classes from this set. The intuition behind
this approach is that in such massive multiclass-multilabel
datasets many classes are inherently hard to learn, and at-
tempting to predict them decreases the overall accuracy of
the classifier.

We propose and analyze, both theoretically and experi-
mentally, a simple label-pruning method. The method is
based on comparing the number of true-positives and false-
positives in each class, and discarding classes where the ra-
tio of true to false positives exceeds a certain threshold. Re-
turning to the example of categorizing the web, the initial
nearest neighbor algorithm is likely to find that many web
pages on classical composers turn out to be close neighbors
of the Wikipedia article onMozart. The nearest neighbor
classifier indiscriminantly assigns all of the Wikipedia cat-
egories that are associated with the article onMozart to all
of these pages. One of these categories isPeople Born in
1756, which is likely to have many false positives across

the validation set. Intuitively, the categoryPeople Born in
1756is incompatible with the click-graph based metric we
have chosen, namely, our metric is unlikely to put differ-
ent web pages from this class in close proximity to each
other. In this situation, our label-pruning method removes
this class from the set of classes the classifier is allowed to
output.

While our method is simple and straightforward to im-
plement, its analysis is quite tricky, since it is based on
premises that might initially appear to be statistically un-
acceptable. After all, our basic assumption is that most
classes are very rare, so the decision to drop a label may be
based on statistically insufficient evidence. Say that we see
two false-positives and one true-positive of a given class
in our validation set: can we confidently decide to remove
labels based on this empirical evidence? The key to the
formal analysis of our technique is to think of its overall
effect rather than considering its effect on each individual
class. Indeed, we cannot conclusively evaluate each class
and our technique will most certainly mistake some good
classes for bad ones. Nevertheless, we can show that our
pruning criterion removes more bad labels than good ones,
and overall improves the accuracy of our classifier, under
mild conditions that often hold in practice. Concretely, we
assume that the class frequencies follow a power-law dis-
tribution and that every example only has a rather small
number of labels.

To our knowledge, our theoretical approach is unique
and quite distinct from previous analyses of multiclass-
multilabel learning algorithms. Most previous such analy-
ses build on techniques originally developed for the analy-
sis of binary classification algorithms, and therefore require
at least some degree of class-wise convergence.

We conclude our paper with a set of experiments, in which
we validate our approach on the task of categorizing web
pages using the set of1.5 million Wikipedia categories.
The simplicity of our approach enables us to perform these
experiments on a single server, without requiring a large
cluster computer.

Related Work

The work in (Zhang, 2004) deals with multiclass classifica-
tion and bears similarities to our work, in that the space of
possible classes can be very large compared to the size of
the dataset. However, the analysis there is specific to mul-
ticlass rather than multiclass-multilabel learning (i.e.each
instance is assigned only a single label), and focuses on
large margin classifiers with a particular rule for choosing
the label of each instance.

A more closely related paper is (Hsu et al., 2009), which
also deals with massive multiclass-multilabel classifica-
tion. It proposes a clever method, where a predictor is
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trained on a compressed representation of the original label
vectors. The original labels are reconstructed using tech-
niques from compressed sensing. The problem setting and
some of the assumptions made (such as label sparsity) are
similar to our work. However, the approach of (Hsu et al.,
2009) applies only to learning algorithms that regress on a
real-valued compressed label vector. This is often not the
case with algorithms designed for massive datasets, such as
the click-graph based approach described earlier. In con-
trast, our approach makes no assumptions about the learn-
ing algorithm.

2 Setting and Notation

We assume that the learning task at hand is a supervised
multiclass-multilabel problem. Formally, letX be an ar-
bitrary measurable space,Y = {0, 1}k, and letD be an
unknown distribution on the product spaceX × Y. Each
element(x,y) in this space is composed of an instance
x and a label vectory, which is a vector of indicators
y = (y1, . . . , yk) that specifies which classes are associ-
ated withx. We assume that label vectors sampled from
D aresparse, namely, thatPr(

∑

j yj ≤ s) = 1 for some
constants. A classifier is a functionh : X → Y, that
maps an instancex to a label vector̂y = h(x). We re-
strict our discussion to classifiers that output sparse label
vectors, namely

∑

j ŷj ≤ s. We evaluate the accuracy of a
classifier using a loss functionℓ(h(x),y), which measures
the disparity between the predicted label set and the actual
label set. In this paper, we focus on a simple weighted loss
function that is parameterized byγ ∈ (0, 1) and defined as

1

s

k
∑

j=1

(1−γ) 11(ŷj = 0, yj = 1)+γ 11(ŷj = 1, yj = 0), (1)

where 11(·) is the indicator function. The parameterγ
controls the importance of false negatives vs. false pos-
itives, and the normalization bys ensures that the loss
is always bounded in[0, 1]. Our ultimate goal is to ob-
tain a classifierh with a small risk, which is defined as
E(x,y)∼D[ℓ(h(x),y)].

We distinguish between two phases of the learning pro-
cess. In thelearning phase, we use some learning algo-
rithm to obtain aninitial classifier h. We then perform a
post-learning phase, where we find alabel transformation
functionϕ : Y → Y, such that the final classifier is the
compositionϕ ◦ h. In this paper, we focus on the post-
learning phase, and make no assumptions on the learning
phase or on the quality of the initial classifier. From the
perspective of the post-learning phase, the initial classifier
h is simply a predefined function. For simplicity, we as-
sume that the data used to trainh is independent from the
data used in the post-learning phase to trainϕ.

In principle, the label transformation functionϕ can be ar-
bitrarily complex. In this paper, we focus on the simple

set of label pruning rules. A label pruning ruleϕỹ corre-
sponds to an elementỹ ∈ {0, 1}k, andϕỹ(y) is the vector
resulting from removing the labels represented byỹ from
the set of labels represented byy. Such rules are simple to
implement and are particularly useful in massive multilabel
problems, where many labels are both inherently noisy and
very rare. In such cases, refraining from predicting these la-
bels can actually improve the final classifier’s performance.

The four basic quantities we work with are the risk and
the empirical risk ofh and of ϕ ◦ h. Letting S denote
an i.i.d. sample of sizem from D, we define theinitial
empirical risk R̂0 = 1/m

∑

(x,y)∈S ℓ(h(x),y), the ini-
tial risk R0 = E(x,y)[ℓ(h(x),y)], thefinal empirical risk

R̂ϕ = 1/m
∑

(x,y)∈S ℓ(ϕ ◦ h(xi),y), and thefinal risk
Rϕ = E(x,y)[ℓ(ϕ ◦ h(x),y)]. Our goal is to find a pruning
ruleϕ such thatRϕ is as small as possible.

For the analysis, we need to describe these quantities in an
alternative form, as specified in the following easy-to-prove
lemma:

Lemma 1. For a given classifierh(·), define

p̂j,11 =
1 − γ

m

∑

(x,y)∈S

11 (h(x)j = yj = 1)

p̂j,10 =
γ

m

∑

(x,y)∈S

11 (h(x)j = 1, yj = 0)

p̂j, 6= =
1

m

∑

(x,y)∈S

(1 − γ) 11 (h(x)j = 0, yj = 1)

+ γ 11 (h(x)j = 1, yj = 0) .

Let pj, 6=, pj,11, andpj,10 be the expected values (over the
sampleS) of p̂j, 6=, p̂j,11, and p̂j,10 respectively. Also, for
a fixed pruning ruleϕ(·), let 11(labelj pruned) be an in-
dicator that equals1 if and only if the pruning ruleϕ(·)
removes labelj. Then it holds that

R̂0 =
1

s

k
∑

j=1

p̂j, 6= , R0 =
1

s

k
∑

j=1

pj, 6=,

R̂ϕ =
1

s

k
∑

j=1

(

p̂j, 6= + 11 (label j pruned) (p̂j,11 − p̂j,10)
)

,

Rϕ =
1

s

k
∑

j=1

(

pj, 6= + 11 (label j pruned) (pj,11 − pj,10)
)

.

3 The Pruning Method

Recall that our goal is to reduce the final riskRϕ. The ex-
pression forRϕ given in Lemma 1 suggests thatRϕ can be
reduced by removing those labels for whichpj,10 > pj,11.
Unfortunately,pj,11 andpj,10 are unknown quantities that
depend onD, and we must resort to using their empirical
counterpartŝpj,11 andp̂j,10. Specifically, our simple label
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pruning procedure proceeds as follows: given a sampleS,
calculatep̂j,11 andp̂j,10, and choose the label pruning rule
ϕ that removes all labels for whicĥpj,11 < p̂j,10. In other
words, this procedure prunes any label for which the ratio
of false positives to true positives exceeds(1 − γ)/γ. No-
tice that this makesϕ a random function that depends on
the randomness of the sampleS. For the theoretical anal-
ysis, it will be convenient to viewRϕ andR̂ϕ as random
variables, which depend on the random draw ofS.

This algorithm essentially attempts to decrease the final
empirical riskR̂ϕ in lieu of Rϕ. However, notice that in
our setting (wherek scales withm), we cannot assume
that each and everŷpj,11, p̂j,10 is an accurate estimate of
pj,11, pj,10. In fact, our analysis shows that̂Rϕ is generally
not a good estimator ofRϕ. Nevertheless, we can prove
that our method reduces the final riskRϕ compared to the
initial risk R0 with high probability, under mild conditions.

4 Theoretical Analysis

Our pruning procedure works by making the empirical risk
R̂ϕ as small as possible. In this section, we show that this
is also likely to makeRϕ smaller thanR0. The straightfor-
ward theoretical approach would be to show that for rea-
sonably large samples,̂R0 is close toR0 andR̂ϕ is close
to Rϕ. While the first premise is easy to show via a large
deviation inequality, it turns out that̂Rϕ does not necessar-
ily converge toRϕ when the number of classes grows with
the number of examples. This is implied by the following
theorem and the discussion which follows. Its proof is a
simple consequence of the definitions, and is omitted due
to lack of space.

Theorem 1. E[Rϕ − R̂ϕ] is lower bounded by

1

s

k
∑

j=1

Pr(label j pruned)(pj,11 − pj,10).

If we were to assume thatk is fixed, we might expect
p̂j,11, p̂j,10 to converge topj,11, pj,10 uniformly for all j =
1, . . . , k. Since our method prunes labels for whichp̂j,11 <
p̂j,10, we would have thatPr(labelj pruned)(pj,11−pj,10)
converges to a non-positive quantity uniformly for anyj,
and thus our lower bound would converge to a non-positive
number. However, when we assume thatk grows withm,
p̂j,11, p̂j,10 need not converge uniformly topj,11, pj,10, and
the correlation betweenPr(label j pruned) and the sign
of (pj,11−pj,10) can remain weak regardless of the sample
size. To give a concrete example, if we takeγ = 1/2, s =
10 and assume thatpj,11 = s/3k, pj,10 = s/6k for all j,
then we have by the theorem above that

E[Rϕ − R̂ϕ] ≥ 1

6k

k
∑

j=1

Pr(labelj pruned).

It can be shown that whenm, k → ∞ but (say)m/k = 3,
the right hand side above converges to a strictly positive
constant. Therefore, it is possible that our lower bound
will remain larger than some positive constant regardless
of sample size, which implies that̂Rϕ does not converge to
Rϕ in such cases.

This observation precisely captures the difficulty of work-
ing with a sample that does not sufficiently represent many
of the individual classes in the problem, and is the rea-
son why most existing algorithms are inadequate when the
number of classes is not fixed. Nevertheless, we can show
that it is possible to analyze the behavior ofRϕ directly.
Specifically, we prove thatRϕ is well behaved when the
training set is large enough, even whenk is very large and
grows withm. Namely, although the empirical quantities
do not necessarily correspond to their expected values, we
can still provide high probability guarantees that our prun-
ing method reduce the overall risk of the classifier. In a
nutshell, the analysis consists of proving that|Rϕ−E[Rϕ]|
is small with high probability (where the expectations are
taken over the random draw of the sampleS), and then di-
rectly proving thatE[Rϕ] is strictly smaller thanR0, under
mild conditions.

The first part of the proposed approach is formalized in
the following theorem. Informally, it states that whenm
is large enough,Rϕ is arbitrarily close to its expectation
with arbitrarily high probability. Note that this bound does
not depend at all onk, the number of classes.

Theorem 2. For any fixedǫ > 0, it holds that

Pr

(

|Rϕ − E[Rϕ]| >
2m−1/6+ǫ

γ(1 − γ)
+ m2/3 exp

(

−m2ǫ
)

)

≤ 2sm2/3 exp
(

−m2ǫ
)

,

The proof is presented in the appendix. Intuitively, the idea
is to distinguish between labels for which|pj,11 − pj,10|
is large, and labels for which this difference is small. The
first type of labels are more common in the data, and thus
we can reliably estimatepj,11−pj,10 and decide whether to
prune them or not. On the other hand, there cannot be too
many such labels, because

∑

j pj,11 + pj,10 is a bounded
quantity. This effectively limits the dimensionality of the
problem regardless of the parameterk. Whenever|pj,11 −
pj,10| is small, the pruning process is noisy and prone to
errors, but it can be shown that these cases do not influence
Rϕ too much. A careful formalization of these ideas, using
Bernstein and McDiarmid’s large deviation bounds, allows
us to show thatRϕ concentrates around its expectation with
high probability, regardless ofk.

Next, we need to show thatR0 −E[Rϕ] is strictly positive,
to prove that our method indeed reduces the final risk. It
turns out that the exact value ofR0 − E[Rϕ] is highly de-
pendent on the specific values ofpj,11 andpj,10 for each
j. Intuitively, if labels for whichpj,10 > pj,11 are pruned
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with high probability and labels for whichpj,10 ≤ pj,11

are pruned with low probability, we expectR0 − E[Rϕ] to
be large. Although it is possible to provide positive lower
bounds onR0 − E[Rϕ] in terms of these quantities, they
are not particularly enlightening. Instead, the theorem be-
low will allow us to characterize a mild condition, under
which we can expectR0 − E[Rϕ] to be strictly positive. A
proof appears in the appendix.

Theorem 3. The differenceR0 − E[Rϕ] is at least

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11) −
1

s

k
∑

j=1

√

pj,11 + pj,10

m
.

Moreover, if we assume thatpj,10 + pj,11 are sorted in
descending order, and there exists somer 6= 2 such that
Pr(h(x)j = 1) ≤ O(j−r) for all j, thenR0 − E[Rϕ] is at
least

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11) − O

(
√

kmax{2−r,0}

m

)

.

The requirement thatr 6= 2 is for technical reasons and can
easily be treated separately.

What does this theorem tell us? The non-negative term
∑

j:pj,10≥pj,11
(pj,10 − pj,11) can be arbitrarily small, but

we can expect it to be lower bounded by a positive constant
(independent ofm, k) if a fixed fraction of the labels are
such thatpj,10 ≥ pj,11, and ifpj,10 − pj,11 is proportional
to pj,10 + pj,11. So we turn our attention to the term

1

s

k
∑

j=1

√

pj,11 + pj,10

m
,

which can indeed be large in the regime wherek scales with
m. For example, ifpj,11 + pj,10 = s/k for all j, the above
equals

√

k/sm ≥ Ω(1), and Thm. 3 may become vacuous.
Luckily, assuming thatpj,11 + pj,10 is equal for allj is un-
realistic. By definition,pj,11 + pj,10 is upper bounded by
Pr(h(x)j = 1), or the probability that our learned hypoth-
esis labels a random instance with labelj. If the marginal
class distribution of the classifier is similar to the marginal
class distribution of the data, then this distribution is of-
ten observed to follow apower law, which corresponds to
the assumption thatPr(h(x)j = 1) ≤ O(j−r) for all j.
Under this assumption, we obtain the second statement in
Thm. 3. This power-law behavior, sometimes known as
Zipf’s law, is a very well known and well documented phe-
nomenon for many rank vs. frequency datasets (see exam-
ples in Manning and Schütze, 2002; Adamic and Huber-
man, 2002; Gabaix, 1999), and in particular for the appli-
cations we have in mind. We verify this property in our
experiments, presented below.

Overall, this lower bound implies that if we letm, k → ∞,
we can expectR0−E[Rϕ] to be positive wheneverm grows

faster thank2−r. In particular, ifr > 1 (which happens
quite often in practice, including in our experiments), we
obtain the interesting result that the lower bound remains
meaningful, even when the number of classesk grows
faster than the number of examplesm.

5 Experiments

We applied our technique to the task of categorizing
web pages using the1.5 million categories defined in
Wikipedia. As mentioned in the introduction, we first used
search engine logs to create a click graph, which is a bipar-
tite graph between queries and web pages. A link between
queryQ and web pageW indicates that a sufficiently large
number of users issued the queryQ and then clicked on
the link to pageW . Next, we randomly split the set of
Wikipedia articles into three sets:50% training,30% vali-
dation, and20% test. Each Wikipedia article is associated
with a set of categories and also corresponds to a node in
the click graph. Next, we propagated the categories from
each Wikipedia training article along the edges of the click
graph, to all of the web pages that have a query in common
with that article (namely, to all web pages whose distance
to the training article is2). We call the resulting labeling
of the weblabeling A. The rationale behind this labeling
procedure is the assumption that two web pages that were
clicked on (by different people, at different times) after the
same query are likely to share many topics. Next, we prop-
agated the categories along the edges of the click graph a
second time, extending the reach of each category to all
pages with graph distance4 from the original article. We
call this labeling B.

We repeated the process described above a second time,
this time seeded with a larger set of labels per Wikipedia
training article. We used the fact that Wikipedia categories
are themselves categorized by higher-level categories. For
example, the Wikipedia article onDogsis associated with
the categoryDomesticated Animals, and the latter is asso-
ciated with the categoryAnimals. We added all of these
second-order categories to each Wikipedia article. We
propagated the extended category sets along the edges of
the click graph as before, to obtainlabeling C. We then
performed a second iteration of label-propagation to obtain
labeling D.

We applied our label-pruning technique independently to
each of the four initial labellings. Namely, we revealed
the true categories of the Wikipedia validation articles and
compared them to the propagated labels in the four versions
of our experiment. For each class we counted true and false
positives, and decided which labels to prune.

The set of Wikipedia categories is problematic in that it is
over-complete. Many categories have duplicates or near-
duplicates; some articles are labeled by one category while
other articles are labeled by its near-duplicate category.
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Figure 1:Ratios between the best attainable test loss and the test loss attained by three different techniques, on four initial labellings.

Also the false-positives in all four labellings significantly
outnumber the true-positives. For these reasons, false-
positives should be treated with great suspicion. When we
see a false-positive, either our classification is wrong or the
Wikipedia editor may have simply neglected to add this
category. Spot-checking reveals that many false-positives
are actually quite reasonable. On the other hand, false-
negatives should always be taken seriously: a human editor
explicitly added a category to the article and our algorithm
concluded that it is not relevant. To correct this imbalance,
we setγ in Eq. (1) to give more weight to false-negatives.
Specifically, we setγ to values between0.01 and0.1.

After using the validation set to identify and remove harm-
ful labels, we revealed the categories in the Wikipedia test
set, and evaluated the performance of our algorithm. For
each of the four labellings and for each value ofγ, we also
calculated anoraclepruning which provides a lower bound
on the test loss of any possible pruning algorithm. This was
done by cheating and finding the best pruning on the test
set (in terms of eachγ-weighted loss). The loss attained by
the oracle varies greatly withγ, so it is meaningless to plot
absolute loss values for different values ofγ on the same
figure. To get a coherent visualization of our results, we
plotted the ratio between the oracle loss and the loss of our
algorithm. The performance of our algorithm is shown in
solid lines in Fig. 1. Values close to1 indicate that our test
loss is very close to the loss of the ideal pruning.

For comparison, the plots in Fig. 1 also show the perfor-
mance of two other simple algorithms. The first is the al-
gorithm that performs no pruning and just keeps the initial
labeling. The second is an algorithm that uses our method
to determine how many labels to remove, and then removes
labels randomly. These experimental results clearly show
the amount of improvement achieved by our algorithm. De-
spite the statistical challenge of generalizing with only a
handful of examples per class, our algorithm performs very
well across a wide range ofγ.

Finally, using a simple least-squares fitting technique, we
validated that all four datasets satisfy the power-law as-
sumption used in our theoretical analysis (see Thm. 3 and
the discussion which follows). Namely, when we sort the
classes by frequency in the data, we see that the frequency
of classyj is proportional toj−r, with r ≈ 1.3 for labeling

A; r ≈ 1.6 for labelingB; r ≈ 1.9 for labelingC; and
r ≈ 2.3 for labelingD.

6 Conclusions

In this paper, we studied the problem of massive multiclass-
multilabel learning, where the set of classes scales with the
number of available training examples. This setting is very
relevant when the set of classes results from a collaborative
tagging scheme, such as Wikipedia categories or keywords
in media hosting websites. In this regime, the standard
assumption of a fixed set of classes is too simplistic, and
straightforward generalizations of methods for binary clas-
sification (such as multiclass SVM) may be impractical.

Motivated by the computational issues faced by practition-
ers in this area, we proposed and analyzed apost-learning
method on top of any desired learning algorithm, which
for our purposes can be treated as a black-box. Our ex-
periments demonstrate that the method works quite well on
real-world, large scale data.

Theoretically, this setting poses a challenge, since we can-
not hope to get a lot of data on each and every class.
As far as we know, this setting violates the assumptions
underlying most previous theoretical work on multiclass-
multilabel learning. Nevertheless, a careful analysis allows
us to justify our approach, using some non-trivial but mild
sufficient conditions, such as sparsity of labels per instance
and a power-law behavior of the class frequencies.

While our approach seems to work in practice, and has
some interesting theoretical properties, the algorithm we
have focused on is obviously a very simple one, and sev-
eral extensions immediately come to mind. One direction
is to utilize additional knowledge about class dependen-
cies, rather than treating each class separately. Also, we
have dealt only with very simple label transformation rules,
which prune a subset of labels (i.e. “if labelA appears, re-
move it”). However, it is possible to envision more com-
plex rules, such as “if labelsA andB appear, but not label
C, replace labelD by labelE”. Understanding how to im-
plement these extensions effectively and in a theoretically
justified manner, even when there are as many classes as
examples, remains a topic for future research.
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A Technical Proofs

A.1 Proof of Thm. 2

We need the following two lemmas. The first lemma fol-
lows directly from Bernstein’s inequality (see for instance
(Boucheron et al., 2004)). We note that using an inequal-
ity that relies on variance is crucial to obtain a non-trivial
bound with our proof technique. The second lemma fol-
lows directly from the definitions. The proofs are omitted
due to lack of space.

Lemma 2. For any j, if pj,10 ≤ pj,11, thenPr(p̂j,10 >
p̂j,11) is at most

exp

(

− m(pj,10 − pj,11)
2

2((1 − γ)pj,11 + γpj,10 + |pj,10 − pj,11|/3)

)

,

A similar bound holds onPr(p̂j,10 ≤ p̂j,11) if pj,10 ≥ pj,11.

Lemma 3. It holds that

k
∑

j=1

|pj,11 − pj,10| ≤
k
∑

j=1

pj,11 + pj,10 ≤ s.

Let α > 0 be an arbitrary parameter to be specified later,
and define the label subsetsJ1 = {j : |pj,11 − pj,10| ≤ α},
J2 = {1, . . . , k} \J1. We have by definition of the pruning
procedure and Lemma 1 that|Rϕ − E[Rϕ]| is at most

1

s

∣

∣

∣

∣

∣

∣

∑

j∈J1

(pj,11 − pj,10)
(

11 p̂j,10>p̂j,11
− Pr (p̂j,10 > p̂j,11)

)

∣

∣

∣

∣

∣

∣

+
1

s

∑

j∈J2

|pj,11 − pj,10|| 11 p̂j,10>p̂j,11
− Pr (p̂j,10 > p̂j,11) |.

(2)

Focusing on the first line in the expression, note that if we
change any single instance in our sample, at most2s terms
will change by at most|pj,11 − pj,10| ≤ α. Therefore,
the expression in the first line will change by at most2α.
Applying McDiarmid’s inequality, and noting that the ex-
pectation of what’s inside the absolute value is zero, we get
that with probability of at least1 − δ, it is upper bounded
by

√

2mα2 log(1/δ). (3)

Turning to the second line in Eq. (2), and applying
Lemma 2, we get that for anyj, with probability of at least
1 − g(m, pj,11, pj,10), it holds that

| 11(p̂j,10 > p̂j,11)−Pr(p̂j,10 > p̂j,11)| ≤ g(m, pj,11, pj,10),

whereg(m, pj,11, pj,10) equals

exp

(

− m(pj,11 − pj,10)
2

2((1 − γ)pj,11 + γpj,10 + |pj,10 − pj,11|/3)

)

.

Let c > 0 be another parameter to be determined later. If
c((1 − γ)pj,11 + γpj,10) ≤ |pj,10 − pj,11|, we can upper
boundg(m, pj,11, pj,10) by

exp

(

− mc2((1 − γ)pj,11 + γpj,10)
2

2 ((1 − γ)pj,11 + γpj,10 + |pj,10 − pj,11|/3)

)

.

Dividing the numerator and denominator of the fraction in
the exponent by(1− γ)pj,11 + γpj,10, and using the easily
verified fact that for anya > 0, b > 0, γ ∈ (0, 1) it holds
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that |a − b|/((1 − γ)a + γb) ≤ 1/(γ(1 − γ)), we get the
upper bound

exp

(

−mc2((1 − γ)pj,11 + γpj,10)

2(1 + 1/3γ(1− γ))

)

. (4)

On the other hand, we always have

| 11(p̂j,10 > p̂j,11) − Pr(p̂j,10 > p̂j,11)| ≤ 1 (5)

with probability 1. Applying Eq. (4) and Eq. (5) on the
second line of Eq. (2), we get a probabilistic upper bound
for it, of the form

∑

j∈J2,1

|pj,11 − pj,10|
s

exp

(

−mc2((1 − γ)pj,11 + γpj,10)

2(1 + 1/3γ(1− γ))

)

+
1

s

∑

j∈J2,2

|pj,11 − pj,10|, (6)

whereJ2,1 = {j ∈ J2 : c ≤ |pj,10−pj,11|
(1−γ)pj,11+γpj,10

}, andJ2,2 =

{j ∈ J2 \ J2,1}. By a union bound, Eq. (5) holds with
probability at least

1 −
∑

j∈J1

exp

(

−mc2((1 − γ)pj,11 + γpj,10)

2(1 + 1/3γ(1 − γ))

)

. (7)

We now make four observations. First, by Lemma 3,
∑

j |pj,11 − pj,10| ≤ s, so there can be at mosts/α labels
j such that|pj,11 − pj,10| > α. Second, it is easy to verify
that if |pj,11 − pj,10| > α (which holds for anyj ∈ J2,1),
then(1 − γ)pj,11 + γpj,10 > αγ(1 − γ). Third, for any
j ∈ J2,2, |pj,11−pj,10| < c((1−γ)pj,11 +γpj,10). Fourth,
∑

j∈J2,2
((1 − γ)pj,11 + γpj,10) ≤ s by Lemma 3 and the

fact thatγ ∈ (0, 1). Applying these four observations on
Eq. (6) and Eq. (7), we can weaken this bound to the form

1

α
exp

(

− mc2αγ(1 − γ)

2(1 + 1/3γ(1− γ))

)

+ c,

which holds with probability of at least

1 − s

α
exp

(

− mc2αγ(1 − γ)

2(1 + 1/3γ(1− γ))

)

.

To get the theorem statement, we combine this with the
bound in Eq. (3), substitute into Eq. (2), chooseα =
m−2/3, δ = sm2/3 exp

(

−m2ǫ
)

(for someǫ > 0), let

c = m−1/6+ǫ

√

2(1 + 1/3γ(1− γ))

γ(1 − γ)
,

and perform some straightforward simplifications.

A.2 Proof of Thm. 3

We have thatR0 − E[Rϕ] equals

1

s

k
∑

j=1

(pj,10 − pj,11) Pr(p̂j,10 > p̂j,11). (8)

For anyj, if pj,10 − pj,11 ≥ 0, we have by Lemma 2 that
Pr(p̂j,10 ≥ p̂j,11) is lower bounded by

1 − exp

(

− m(pj,10 − pj,11)
2

2((1 − γ)pj,10 + γpj,11) + |pj,10 − pj,11|/3

)

≥ 1 − exp

(

− m(pj,10 − pj,11)
2

2(pj,10 + pj,11 + (pj,10 + pj,11)/3)

)

= 1 − exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

.

If pj,10 − pj,11 ≤ 0, we have by Lemma 2 in a similar
manner that

Pr(p̂j,10 > p̂j,11) ≤ exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

.

Substituting these results into Eq. (8), we get thatR0 −
E[Rϕ] is lower bounded by

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11)

− 1

s

k
∑

j=1

|pj,10 − pj,11| exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

.

(9)

In order to upper bound the second line in the expression
(with something which does not depend onpj,10 − pj,11),
it is enough to upper bound for anyj the expression

max
|pj,10−pj,11|

|pj,10 − pj,11| exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

.

(10)
For that, it is sufficient to find the maximal value of the
functionf(x) = x exp(−3mx2/8p), wherep := pj,11 +
pj,10, for anyx ∈ [0, p]. It can be verified that this function
is maximized atx =

√

4p/3m. Substituting this value for
|pj,10−pj,11| in Eq. (10), we get an upper bound of the form
√

4(pj,10 + pj,11)/3m exp(1). Substituting this bound in
Eq. (9), and simplifying by noting that

√

4/3 exp(1) ≈
0.7 < 1, we get the required lower bound

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11) −
1

s

k
∑

j=1

√

pj,11 + pj,10

m

on R0 − E[Rϕ]. To derive from it the second inequality
in the theorem, notice that under the assumptions stated
there,

∑k
j=1

√
pj,11 + pj,10 ≤

∑k
j=1

√

Pr(h(x)j = 1) is

at mostC
∑k

j=1 j−r/2 for some constantC. This sum is

O(k1−r/2) if r < 2, O(log(k)) if r = 2, andO(1) if r > 2.
Ignoring the caser = 2 for simplicity, we upper bound
the different cases byO(

√
kmax{2−r,0}), and the inequality

stated in the theorem follows.


