Data-Driven Online to Batch Conversions

Ofer Dekel and Yoram Singer
School of Computer Science and Engineering
The Hebrew University, Jerusalem 91904, Israel
{of erd, si nger }@s. huji.ac.il

Abstract

Online learning algorithms are typically fast, memory ééii¢, and sim-
ple to implement. However, many common learning problemshfite
naturally in the batch learning setting. The power of onliearning
algorithms can be exploited in batch settings by usinine-to-batch
conversions techniques which build a new batch algorittomfan ex-
isting online algorithm. We first give a unified overview ofel exist-
ing online-to-batch conversion techniques which do notitesaing data
in the conversion process. We then build upon thees@-independent
conversions to derive and analydata-drivenconversions. Our conver-
sions find hypotheses with a small risk by explicitly miniing data-
dependent generalization bounds. We experimentally dstraia the
usefulness of our approach and in particular show that thee-diéven
conversions consistently outperform the data-indepetrm®versions.

1 Introduction

Batch learningis probably the most common supervised machine-learnitimmge In the
batch setting, instances are drawn from a donféiand are associated with target values
from a target se}. The learning algorithm is given a training set of examplgsere each
example is an instance-target pair, and attempts to igeatifunderlying rule that can be
used to predict the target values of new unseen exampleghén words, we would like
the algorithm togeneralizefrom the training set to the entire domain of examples. The
target spac@’ can be either discrete, as in the case of classification, mintmus, as in
the case of regression. Concretely, the learning algorithoonfined to a predetermined
set of candidatdypothesedt, where each hypothesis € H is a mapping from¥ to

Y, and the algorithm must select a “good” hypothesis fraim The quality of different
hypotheses ifH is evaluated with respect to a loss functinwherel(y, y') is interpreted
as the penalty for predicting the target valylewhen the correct target ig. Therefore,
£(y, h(x)) indicates how well hypothesis performs with respect to the example, y).
When) is a discrete set, we often use the 0-1 loss, definet{fyy’) = 1,-,, . We also
assume that there exists a probability distributidrover the product spac& x), and
that the training set was sampled i.i.d. from this distiitnt Moreover, the existence &f
enables us to reason about the average performance of athagisoover its entire domain.
Formally, therisk of an hypothesi# is defined to be,

Riskp(h) = Exy)~p [€(y, h(x))] - 1)

The goal of a batch learning algorithm is to use the trainieigte find a hypothesis that
does well on average, or more formally, to find: H with a small risk.

In contrast to the batch learning settingline learningtakes place in a sequence of rounds.
On any given round, the learning algorithm receives a single instarce X and predicts

its target value using an hypothesis ;, which was generated on the previous round. On
the first round, the algorithm uses a default hypothkgidmmediately after the prediction

is made, the correct target valygis revealed and the algorithm suffers an instantaneous
loss of(y, h:—1(x¢)). Finally, the online algorithm may use the newly obtainedragle
(x¢,y:) to improve its prediction strategy, namely to replége; with a new hypothesis
h:. Alternatively, the algorithm may choose to stick with itsrieent hypothesis and sets
h: = hs—1. An online algorithm is therefore defined by its default hym@sish, and the
update rule it uses to define new hypotheses. dimulative lossuffered on a sequence
of rounds is the sum of instantaneous losses suffered on @selof the rounds in the
sequence. In the online setting there is typically no needfiy statistical assumptions
since there is no notion of generalization. The goal of thimeralgorithm is simply to
suffer a small cumulative loss on the sequence of examplegiven, and examples that
are not in this sequence are entirely irrelevant.

Throughout this paper, we assume that we have access to agtioel learning algorithm
A for the task on hand. Moreoved is computationally efficient and easy to implement.
However, the learning problem we face fits much more natuveithin the batch learning
setting. We would like to develop a batch algorittfinthat exhibits the desirable charac-
teristics of A but also has good generalization properties. A simple amgefal way to
achieve this is to use amline-to-batch conversiotechnique. This is a general name for
any technique which used as a building block in the construction 8f Several differ-
ent online-to-batch conversion techniques have been ajgyelover the years. Littlestone
and Warmuth [11] introduced an explicit relation betweempeession and learnability,
which immediately lent itself to a conversion techniquediassification algorithms. Gal-
lant [7] presented thBocket algorithma conversion of Rosenblatt’s onliferceptronto
the batch setting. Littlestone [10] presented @ress-Validationconversion which was
further developed by Cesa-Bianchi, Conconi and GentileAfl]of these techniques begin
by presenting the training séky, 1), - ., (Xm, ¥m) t0 A in some arbitrary order. Agl
performs then online rounds, it generates a sequence of online hypothések it uses to
make predictions on each round. This sequence includeethalthypothesi#, and the
m hypotheseé, ..., h,, generated by the update rule. The aforementioned tectsajue
share a common property: they all choaséhe output of the batch algorithi, to be one
of the online hypothesés,, . . ., h,.

In this paper, we focus on a second family of conversionscivbivolved somewhat later
and is due to the work of Helmbold and Warmuth [8], Freund acltbBire [6] and Cesa-
Bianchi, Conconi and Gentile [2]. The conversion strategpiethis family also begin by
using.A to generate the sequence of online hypotheses. Howevezathsf relying on
a single hypothesis from the sequence, theyhstt be some combination of the entire
sequence. Another characteristic shared by these threersions is that the training data
does not play a part in determining how the online hypothasesombined. That is, the
training data is not used in any way other than to generatsdhaencey, ..., k. In
this sense, these conversion technigueslata-independentn this paper, we build on the
foundations of these data-independent conversions, dimtedmnversion techniques that
explicitly use the training data to derive the batch aldomitfrom the online algorithm. By
doing so, we effectively define thaata-drivencounterparts of the algorithms in [8, 6, 2].

This paper is organized as follows. In Sec. 2 we review tha-glatependent conversion
techniques from [8, 6, 2] and give a simple unified analysisfithree conversions. At the
same time, we present a general framework which serves aklagtblock for our data-
driven conversions. Then, in Sec. 3, we derive three speagas of the general framework

and demonstrate some useful properties of the data-drimevecsions. Finally, in Sec. 4,
we compare the different conversion techniques on severathiimark datasets and show
that our data-driven approach outperforms the existing-datependent approach.

2 \oting, Averaging, and Sampling

The first conversion we discuss is thieting conversion [6], which applies to problems
where the target spageis discrete (and relatively small), such as classificatiabiems.
The conversion presents the training 8et, 1), - - ., (Xm, ym) to the online algorithn,
which generates the sequence of online hypothéses, ., h,,,. The conversion then out-
puts the hypothesig”, which is defined as follows: given an inpute X, each online
hypothesis casts a vote bf(x) and therh" outputs the target value that receives the high-
est number of votes. For simplicity, assume that ties arkdor@rbitrarily. The second
conversion is thaveragingconversion [2] which applies to problems whérés a convex
set. For example, this conversion is applicable to margiseld online classifiers or to re-
gression problems where, in both casgss R. This conversion also begins by usidgo
generatéy, . . ., h,,. Then the batch hypothesi$ is defined to beml—+1 Yoo hi(x). The
third and last conversion discussed here isstamplingconversion [8]. This conversion is
the most general and applicable to any learning problemekienthis generality comes at
a price. The resulting hypothesis;, is a stochastic function and not a deterministic one.
In other words, if applied twice to the same instaricemay output different target values.
Again, this conversion begins by applyingto the training set and obtaining the sequence
of online hypotheses. Every tinté€ is evaluated, it randomly selects onengf . . . , h,,, and
uses it to make the prediction. Sinkeis a stochastic function, the definitionBfskp (h°)
changes slightly and expectation in Eq. (1) is taken also theerandom functiorS.

Simple data-dependent bounds on the risktf h* and hS can be derived, and these
bounds are special cases of the more general analysis gialew.bWe now describe a
simple generalization of these three conversion techsigiiés reasonable to assume that
some of the online hypotheses generated4gre better than others. For instance, the
default hypothesig, is determined without observing even a single training gdanirhis
surfaces the question whether it is possible to isolateltkest” online hypotheses and only
use them to define the batch hypothesis. Formallyjtétdenote the sefo,...,m} and

let I be some non-empty subset of,]. Now definehy(x) to be the hypothesis which
performs voting as described above, with the single diffeeethat only the members of
{hi : i € I} participate in the vote. Similarly, defirg} (x) = (1/[1]) >_,; hi(x), and let
h3 be the stochastic function that randomly chooses a fundtan the set{h; : i € I}
every time it is evaluated, and predicts according to it. da@-independent conversions
presented in the beginning of this section are obtained tingd = [m]. Our idea is to
use the training data to find a Seivhich induces the batch hypothedéls 1%, andh$ with

the smallest risk.

Since there is an exponential number of potential subsefts:jpfwe need to restrict our-
selves to a smaller set of candidate sets. Formally le¢ a family of subsets dfn], and
we restrict our search farto the familyZ. Following in the footsteps of [2], we make the
simplifying assumption that none of the setsZirinclude the largest index. This is a
technical assumption which can be relaxed at the price afjatkt less elegant analysis.
We use two intuitive concepts to guide our searchlfoFirst, for any set/ C [m — 1],
defineL(J) = (1/[J]) >_ e U(yj+1. hj(xj41)). L(J) is the empirical evaluation of the
loss of the hypotheses indexed $yWe would like to find a sef for which L(J) is small
since we expect that good empirical loss of the online hygseh indicates a low risk of
the batch hypothesis. Second, we would [[{¢to be large so that the presence of a few
bad online hypotheses i will not have a devastating effect on the performance of the
batch hypothesis. The trade-off between these two congpetincepts can be formalized

as follows. LetC' be a non-negative constant and define,
B(J) = L) +ClI| 7% .)

The functiong decreases as the average empirical Ib6$) decreases, and also p§
increases. It therefore captures the intuition descrilbed& The functiord serves as our
yardstick when evaluating the candidateZ irSpecifically, we sef = argmin ez 5(J).
Below we formally justify our choice aof, and specifically show théit(.J) is a rather tight
upper bound on the risk &f}, Y andhS,. The firstlemma relates the risk of these functions
with the average risk of the hypotheses indexed/by

Lemmal. Let(x1,y1),.- ., (Xm,ym) be a sequence of examples which is presented to the
online algorithmA and lethy, .. ., h,, be the resulting sequence of online hypotheses. Let
J be a non-empty subsetof — 1] and let/ : Y x) — R be a loss function(l) If £ is

the 0-1 loss theRiskp (hY) < (2/[J]) >-,c; Riskp (hi(x)). (2) If £is convex in its second
argument therRiskp (7) < (1/[J]) >_,c; Riskp(hi(x)). (3) For any loss functiort it
holds thatRiskp (h5) = (1/]J]) >, s Riskp (hi(x)).

Proof. Beginning with the voting conversion, recall that the lagsdtion being used is the
0-1 loss, namely there is a single correct prediction whicluis a loss of and every other
prediction incurs a loss df. For any exampléx, y), if more than half of the hypotheses
in {h;},c; predict the correct outcome then cleaflyj also predicts this outcome and
{(y,hY(x)) = 0. Therefore, if¢(y, h¥;(x)) = 1 then at least half of the hypotheses in
{hi}ics make incorrect predictions arifl/|/2) < >, ; £(y, hi(x)). We therefore get,

2
Uy, B9 (x) < =) Ly, hi(x)) .
715
The above holds for any examp(®, y) and therefore also holds after taking expectations
on both sides of the inequality. The bound now follows frora linearity of expectation
and the definition of the risk function in Eq. (1).

Moving on to the second claim of the lemma, we assume #hisitconvex in its second
argument. The claim now follows from a direct applicatiordefisen’s inequality.

Finally, 5 chooses its outcome by randomly choosing an hypothesfg&jn i € J},
where the probability of choosing each hypothesis in thiegeals(1/|J|). Therefore, the
expected loss suffered By, on an exampléx, y) is (1/].J]) >, ; £(y, hi(x)). The risk of
RS is simply the expected value of this term with respect to #relom selection ofx, y).
Again using the linearity of expectation, we obtain thedtdlaim of the lemma. O

The next lemma relates the average risk of the hypothesesgeddyy./ with the empirical
performance of these hypotheség,/). In the following lemma, we use capital letters to
emphasize that we are dealing with random variables.

Lemma 2. Let (X1,Y7),...,(Xm,Y:) be a sequence of examples independently sam-
pled according tdD. Let, Hy, ..., H,, be the sequence of online hypotheses generated by
A while observing this sequence of examples. Assume thabskeunctiory is upper-
bounded byk. Then for any/ C [m — 1],

1 . Cc?
Pr 7 ieZJRlskD(Hi) > ﬁ(J)] < exp <_W) ,
whereC is the constant used in the definition®{Eq. (2)).

The proof of this lemma is a direct application of Azuma’s bdwn the concentration of
Lipschitz martingales [1], and is identical to that of Prsjion 1 in [2]. For concreteness,

we now focus on the averaging conversion and note that thigsmsaof the other two
conversion strategies are virtually identical. By combinihe first claim of Lemma 1 with
Lemma 2, we get that for any € Z it holds thatRiskp (h) < §(J) with probability at
leastl — exp (—C?/(2R?)). Using the union boundRiskp (k) < B(J) forall J € T
simultaneously with probability at least,

CQ

The greater the value @, the moregs is influenced by the terffy|. On the other hand,
a large value of” increases the probability thatindeed upper boundiskp (%) for all
J € Z. In conclusion, we have theoretically justified our choi€gan Eq. (2).

3 Concrete Data-Driven Conversions

In this section we build on the ideas of the previous sectimhderive three concrete data-
driven conversion techniques.

Suffix Conversion: An intuitive argument against selectifig= [m], as done by the data-
independent conversions, is that many online algorithmd te generate bad hypotheses
during the first few rounds of learning. As previously notdte default hypothesiay is
determined without observing any training data, and we lshexpect the first few online
hypotheses to be inferior to those that are generated fuatbieg. This argument motivates
us to consider subsetsof the form{a,a + 1,...,m — 1}, whereq is a positive integer
less than or equal ta — 1. Li [9] proposed this idea in the context of the voting corsien
and gave a heuristic criterion for choosiagOur formal setting gives a different criterion
for choosingu. In this conversion we defirE to be the set of all suffixes ¢fn — 1]. After
the algorithm generatés, . . ., h,,, we setl to bel = arg min ez 8(J).

Interval Conversion: Kernel-based hypotheses are functions that take the fofxr),=

> -1 ;K (z;,x), whereK is a Mercer kemelzi, ..., z, are instances, often referred
to assupport patternanday, . . . , «,, are real weights. A variety of different batch algo-
rithms produce kernel-based hypotheses, including th@&upector Machine [12]. An
important learning problem, which is currently addressgadtily a handful of algorithms,

is to learn a kernel-based hypothesiwhich is defined by at mod® support patterns. The
parameterB is a predefined constant often referred to ashihégetof support patterns.
Naturally, kernel-based hypotheses which are represdntea few support patterns are
memory efficient and faster to calculate. A similar problemses in the online learning
setting where the goal is to construct online algorithmsrefeach online hypothesis is

a kernel-based function defined by at mBstectors. Several online algorithms have been
proposed for this problem [4, 13, 5]. First note that the diatkependent conversions, with
I = [m], are inadequate for this setting. Although each indivichr@ine hypothesis is
defined by at mosB vectors,h” is defined by the union of these sets, which can be much
larger thanB.

To convert a budget-constrained online algorithtrinto a budget-constrained batch al-
gorithm, we make an additional assumption on the updatéegira&loyed by4d. We
assume that whenevetr updates its online hypothesis, it adds a single new supptienn
into the set used to represent the kernel hypothesis, arsibhosemoves some other pat-
tern from this set. The algorithms in [4, 13, 5] all fall intaig category. Therefore, if we
choosel to be the sefa,a + 1,...,b} for some integers < a < b < m, and.A updates
its hypothesig: times during rounds + 1 throughb, thenh?4 is defined by at mosB + &
support patterns. Concretely, defifieo be the set of all non-empty intervalsim — 1].
With C' set properly3(.J) boundsRiskp (R) for every.J € Z with high probability. Next,

Jo,7

Jo,3 Ja7 Js,11

Jo,1 J2,3 Ja5 Je,7 Js,9 J10,11

hO hl h2 h3 h4 h5 hG h7 hS h9 hl(] hll h12

Figure 1: An illustration of the tree-based conversion.

generatéy, . . ., h,, by running.A with a budget parameter @ /2. Finally, choose to
be the set irf which contains at mosB/2 updates and also minimizes thidunction. By
construction, the resulting hypothest, is defined using at mos® support patterns.

Tree-Based Conversion: A drawback of the suffix conversions is that it must be per-
formed in two consecutive stages. Fiigt ..., h,, are generated and stored in memory.
Only then can we calculatg(.J) for everyJ € 7 and perform the conversion. Therefore,
the memory requirements of this conversions grow lineariyh w.. We now present a
conversion that can sidestep this problem by interleavivegconversion with the online
hypothesis generation. This conversion slightly devi&tesy the general framework de-
scribed in the previous section: instead of predefining @keandidates, we construct
the optimal subsef in a recursive manner. As a consequence, the analysis im¢hi®ps
section does not directly provide a generalization boumdHis conversion. Assume for a
moment thain is a power of2. For all0 < a < m — 1 defineJ, , = {a}. Now, assume
that we have already constructed the sgtg and.J. 4, wherea, b, ¢, d are integers such
thate < d, b= (a +d —1)/2, andc = b + 1. Given these sets, defing ; as follows:

Ja,b if ﬁ(Ja,b) S B(Jc,d) A ﬂ(Ja,b) S 6(Ja,b U Jc,d)
Joq = { Jed it B(Jea) < B(Jap) N B(Jea) < B(JapUdea) - (3)
Jap Udeq Otherwise

Finally, definel = J,,,—1 and output the batch hypothedi$. An illustration of this
process is given in Fig. 1. Note that the definition lofequires onlym — 1 recursive
evaluations of Eq. (3). Whem is not a power o, we can pad the sequence of online
hypotheses with virtual hypotheses, each of which attairisfinite loss. This conversion
can be performed in parallel with the online rounds sincecomdt we already have all of
the information required to calculatg, ; for all b < ¢.

In the special case where the instances are vect®s ,in, . . ., h,, are linear hypotheses
and we use the averaging technique, the implementatioreafée-based conversion be-
comes memory efficient. Specifically, assume that éadhkes the fornh;(x) = w; - x
wherew; is a vector of weights ilR™. In this case, storing an online hypothesisis
equivalent to storing its weight vecter;. For anyJ C [m — 1], storingzjej h; requires
storing the single:-dimensional vectop ;. ; w;. Hence, once we calculatg, , we can
discard the original online hypotheges . . ., h, and instead merely keé@a ,- Moreover,

in order to calculat@ we do not need to keep the skt, itself but rather the values(.J, ;)
and|J, |. Overall, storing’’ , L(J,), and|J, | requires only a constant amount of
memory. It can be verified using an inductive argument thexotrerall memory utilization
of this conversion ig)(log(m)), which is significantly less than th@(m) space required
by the suffix conversion.

4 Experiments

We now turn to an empirical evaluation of the averaging antingoconversions. We
chose multiclass classification as the underlying task aed the multiclass version of

3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

NEAN h m T I'I'I - N
T H|F FF 9F [T H|FTHEFFE|T LT

|| | | [T [T [| @m0

[P [[T [[[[[

ISOLET USPS MNIST LETTER

" EEE LI_|LJLIJ T L;JLIJLIJ LIJ+LI-| LI |_I_|LI_|'-I—' quLIJ

s 1T

T S | T S I T | T I T

Figure 2: Comparison of the three data-driven averaging/ersions with the data-
independent averaging conversion, for different datgdetsis) and different training-set
sizes (X-axis). Each bar shows the difference between tloe percentages of a data-
driven conversionquffix (S), interval (I) or tree-basedT)) and of the data-independent

conversion. Error bars show standard deviation ovektfodds.

the Passive-Aggressivig®A) algorithm [3] as the online algorithm. The PA algoritisra
kernel-based large-margin online classifier. To apply thténg conversiony should be a
finite set. Indeed, in multiclass categorization problehesget)’ consists of all possible
labels. To apply the averaging conversignmust be a convex set. To achieve this, we use
the fact that PA associates a margin value with each cladsjefine) = R® (wheres is

the number of classes).

In our experiments, we used the datadeES TER, MNI ST, USPS (training set only), and

| SOLET. These datasets are of size 20000, 70000, 7291 and 779¢teslyeMNI ST and
USPS both contain images of handwritten digits and thus inducela8s problems. The
other datasets contain image&{ TER) and utterancesd SOLET) of the English alphabet.
We did not use the standard splits into training set and &tstred instead performed cross-
validation in all of our experiments. For various valueskofve split each dataset into
parts, trained each algorithm using each of these partsemteldt on thé: — 1 remaining
parts. Specifically, we ran this experiment for= 3,...,10. The reason for doing this
is that the experiment is most interesting when the traisgtg are small and the learning
task becomes difficult.

We applied the data-independent averaging and voting csiovis, as well as the three
data-driven variants of these conversions (6 data-driegwversions in all). The interval
conversion was set to choose an interval containing 500tapdd he parametar’ was
arbitrarily set to3. Additionally, we evaluated the test error of the last hjyesis gener-
ated by the online algorithr,,,. It is common malpractice amongst practitioners to use
h., as if it were a batch hypothesis, instead of using an onbieatch conversion. As a
byproduct of our experiments, we show thgt performs significantly worse than any of
the conversion techniques discussed in this paper. Thelkesad in all of the experiments
is the Gaussian kernel with default kernel parameters. Wedhlike to emphasize that our
goal was not to achieve state-of-the-art results on thessels but rather to compare the
different conversion strategies on the same sequence aftingges. To achieve the best
results, one would have to tudiéand the various kernel parameters.

The results for the different variants of the averaging ession are depicted in Fig. 2.

last average average-sfx|| voting voting-sfx
LETTER 5-fold 299+1.8 21.2+£0.5 | 20.5£0.6 23.4+£08 | 21.5+£0.8
LETTER 10-fold || 37.3 £ 2.1 26.94+0.7 | 26.5+0.6 30.24+1.0 | 27.9+0.6

MNIST 5-fold 7.2+0.5 59+04 5.3+0.6 7.0+0.5 6.5+0.5
MNIST 10-fold 13.8+2.3 9.5+0.8 9.1+0.8 8.7+ 0.5 8.0+0.5
USPS 5-fold 9.7+1.0 7.5+0.4 7.1+04 9.4+04 8.8+0.3

USPS 10-fold 12.7+4.7 10.1 £0.7 9.5+0.8 125+1.0 | 11.3£0.6
ISOLET 5-fold 20.1£3.8 176+41 | 16.7£33 || 206£34 | 183+3.9
ISOLET 10-fold || 28.6 + 3.6 25.8+2.8 | 22.7+33 || 29.3£3.1 | 26.7£4.0

Table 1: Percent of errors averaged over thfelds with standard deviation. Results are
given for the last online hypothesis,{), the data-independent averaging and voting con-
versions, and their suffix variants. The lowest error on eéashis shown in bold.

For each dataset and each training-set size, we preserdptobarhich represents by how
much each of the data-driven averaging conversions improver the data-independent
averaging conversion. For instance, the left bar in eachgblows the difference between
the test errors of the suffix conversion and the data-inddgrenconversion. A negative
value means that the data-driven technique outperformsldteeindependent one. The
results clearly indicate that the suffix and tree-based@inons consistently improve over
the data-independent conversion. The interval converdo@s not improve as much and
occasionally even looses to the data-independent cooverdowever, this is a small price
to pay in situations where it is important to generate a camnkarnel-based hypothesis.
Due to the lack of space, we omit a similar figure for the votingversion and merely note
that the plots are very similar to the ones in Fig. 2.

In Table 1 we give some concrete values of test error, and acmgata-independent and
data-driven versions of averaging and voting, using théxsabnversion. As a reference,
we also give the results obtained by the last hypothesisrgteby the online algorithm.
In all of the experiments, the data-driven conversion atitpms the data-independent con-
version. In general, averaging exhibits better resulta traing, while the last online hy-
pothesis is almost always inferior to all of the online-tatdh conversions.

References

[1] K. Azuma. Weighted sums of certain dependent random varialbtg¢s®ku Mathematical Jour-
nal, 68:357-367, 1967.
[2] N. Cesa-Bianchi, A. Conconi, and C.Gentile. On the generalizatidityadsf on-line learning
algorithms.IEEE Transactions on Information Theoi3004.
[3] K.Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y.e8ir@nline passive aggressive
algorithms.Journal of Machine Learning Researc006.
[4] K. Crammer, J. Kandola, and Y. Singer. Online classification ondgbtNIPS 16 2003.
[5] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: Médebased perceptron on a
fixed budgetNIPS 18 2005.
[6] Y. Freund and R. E. Schapire. Large margin classification usingoéneeptron algorithm.
Machine Learning37(3):277—296, 1999.
[7] S.I. Gallant. Optimal linear discriminantfCPR 8 pages 849-852. IEEE, 1986.
[8] D. P. Helmbold and M. K. Warmuth. On weak learnindournal of Computer and System
Sciences50:551-573, 1995.
[9] Y. Li. Selective voting for perceptron-like on-line learning. IGML 17, 2000.
[10] N. Littlestone. From on-line to batch learninGOLT 2 pages 269-284, July 1989.
[11] N. Littlestone and M. Warmuth. Relating data compression and legitgabUnpublished
manuscript, November 1986.
[12] V. N. Vapnik. Statistical Learning TheoryWiley, 1998.
[13] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on a tightelget. AISTAT 102005.

