The Forgetron:
A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering
The Hebrew University, Jerusalem 91904, Israel
{of erd, shai s, si nger }@s. huji.ac.il

Abstract

The Perceptron algorithm, despite its simplicity, oftenf@ens well on
online classification tasks. The Perceptron becomes eslyeeffective
when it is used in conjunction with kernels. However, a comrdd-
ficulty encountered when implementing kernel-based ordigerithms
is the amount of memory required to store the online hypdahegich
may grow unboundedly. In this paper we present and analyz&din-
getron algorithm for kernel-based online learning on a firegmory
budget. To our knowledge, this is the first online learningogthm
which, on one hand, maintainssarict limit on the number of exam-
ples it stores and, on the other hand, entertains a relaistake bound.
In addition to the formal results, we also present experimerith real
datasets which underscore the merits of our approach.

1 Introduction

The introduction of the Support Vector Machine (SVM) [8] gpad a widespread interest
in kernel methods as a means of solving (binary) classifingtroblems. Although SVM
was initially stated as a batch-learning technique, it isiggmtly influenced the develop-
ment of kernel methods in the online-learning setting. @tlassification algorithms that
can incorporate kernels include the Perceptron [6], ROMEIALMA [3], NORMA [4],
Ballseptron [7], and the Passive-Aggressive family of athms [1]. Each of these algo-
rithms observes examples in a sequence of rounds, and ectssts classification function
incrementally, by storing a subset of the observed examplés internal memory. The
classification function is then defined by a kernel-depehdembination of the stored ex-
amples. This set of stored examples is the online equivalietiite support sebf SVMs,
however in contrast to the support, it continually changetearning progresses. In this
paper, we call this set thective setas it includes those examples that actively define the
current classifier. Typically, an example is added to thevaset every time the online al-
gorithm makes a prediction mistake, or when its confiden@eprediction is inadequately
low. A rapid growth of the active set can lead to significanhpatational difficulties. Nat-
urally, since computing devices have bounded memory ressuthere is the danger that
an online algorithm would require more memory than is ptal§iavailable. This problem
becomes especially eminent in cases where the online #igoi$ implemented as part of
a specialized hardware system with a small memory, such ashdentelephone or an au-



tonomous robot. Moreover, an excessively large active aetiead to unacceptably long
running times, as the time-complexity of each online rourales linearly with the size of
the active set.

Crammer, Kandola, and Singer [2] first addressed this pnolidg describing an online
kernel-based modification of the Perceptron algorithm iictvithe active set does not ex-
ceed a predefindolidget Their algorithm removes redundant examples from the astt
S0 as to make the best use of the limited memory resource oWedbrdes and Bottou [9]
followed with their own online kernel machine on a budget.tiBtechniques work rela-
tively well in practice, however they both lack a theordtigaarantee on their prediction
accuracy. In this paper we present the Forgetron algorithorline kernel-based classi-
fication. To the best of our knowledge, the Forgetron is ths éinline algorithm with a
fixed memory budget which also entertains a formal worsé castake bound. We name
our algorithm the Forgetron since its update builds on tthah® Perceptron and since it
gradually forgets active examples as learning progresses.

This paper is organized as follows. In Sec. 2 we begin with eenfarmal presentation of
our problem and discuss some difficulties in proving mistakends for kernel-methods
on a budget. In Sec. 3 we present an algorithmic frameworloritine prediction with a
predefined budget of active examples. Then in Sec. 4 we dedeacrete algorithm within
this framework and analyze its performance. Formal probtaio claims are omitted due
to the lack of space. Finally, we present an empirical evednaf our algorithm in Sec. 5.

2 Problem Setting

Online learning is performed in a sequence of consecutivads. On round the online
algorithm observes an instangg which is drawn from some predefined instance domain
X. The algorithm predicts the binary label associated witt thstance and is then pro-
vided with the correct labe}; € {—1,+1}. At this point, the algorithm may use the
instance-label paifx:, y:) to improve its prediction mechanism. The goal of the algonit

is to correctly predict as many labels as possible.

The predictions of the online algorithm are determined byypothesiswhich is stored
in its internal memory and is updated from round to round. \Waafe the hypothesis
used on round by f;. Our focus in this paper is on margin based hypotheses, gamel
f+ is a function fromX’ to R where sigiif;(x;)) constitutes the actual binary prediction
and |f:(x;)| is the confidence in this prediction. The tenfi(x) is called themargin
of the prediction and is positive whenevgand sigrif(x)) agree. We can evaluate the
performance of a hypothesis on a given exaniglgy) in one of two ways. First, we can
check whether the hypothesis makes a prediction mistakeelyadetermine whethey =
sign(f(x)) or not. Throughout this paper, we usé to denote the number of prediction
mistakes made by an online algorithm on a sequence of exarley: ), . . ., (x7, yr).
The second way we evaluate the predictions of a hypothedig issing thehinge-loss
function, defined as,

0 it yf(x)>1
(f;(x,y) = { 1—yf(x) :)thyefr\(/vi)se_ ' @)

The hinge-loss penalizes a hypothesis for any margin lessith Additionally, if y #
sign(f(x)) then’(f, (x,y)) > 1 and therefore theumulative hinge-lossuffered over a
sequence of examples upper boundsThe algorithms discussed in this paper use kernel-
based hypotheses that are defined with respect to a kermatopk : X x X — R which
adheres to Mercer’s positivity conditions [8]. A kernelsied hypothesis takes the form,

k
)= aK(xi,x) @)
=1



wherexy,...,x; are members o anday,...,ay are real weights. To facilitate the
derivation of our algorithms and their analysis, we asgeaareproducing kernel Hilbert
space (RKHS) withK in the standard way common to all kernel methods. Formally,
let Hx be the closure of the set of all hypotheses of the form giveidn (2). For

any two functions,f(x) = Y, ;K (x;,x) andg(x) = i, §;K(z;,x), define
the inner product between them to ¢, g) = >°F, >\ a;3; K (x;,2;). This inner-
product naturally induces a norm defined gl = (f, f)!/? and a metrid|f — g|| =

(£, f) = 2(f,9) + (g,9))/%. These definitions play an important role in the analysis of
our algorithms. Online kernel methods typically restri@mselves to hypotheses that are
defined by some subset of the examples observed on previandso That is, the hy-
pothesis used on rouridakes the formf;(x) = >, «:K(x;,x), wherel; is a subset

of {1,...,(¢-1)} andx; is the example observed by the algorithm on rounds stated
above,l; is called the active set, and we say that examsplis activeon roundt if i € I;.

Perhaps the most well known online algorithm for binary sifésation is the Percep-
tron [6]. Stated in the form of a kernel method, the hypotkegmerated by the Perceptron
take the formf;(x) = > .., y:K(x;,x). Namely, the weight assigned to each active
example is eithes-1 or —1, dtepending on the label of that example. The Perceptron ini-
tializes I; to be the empty set, which implicitly sef§ to be the zero function. It then
updates its hypothesis only on rounds where a predictiotakéds made. Concretely, on
roundt, if f;(x;) # y: then the index is inserted into the active set. As a consequence, the
size of the active set on rounequals the number of prediction mistakes made on previous
rounds. A relative mistake bound can be proven for the P&meplgorithm. The bound
holds for any sequence of instance-label pairs, and complagenumber of mistakes made
by the Perceptron with the cumulative hinge-loss of any fingplothesisy € Hy, even

one defined with prior knowledge of the sequence.

Theorem 1. Let K be a Mercer kernel and letxy, 1), .., (x7, yr) be a sequence of
examples such thak (x;,x;) < 1 for all t. Letg be an arbitrary function inHx and

definel, = €(g; (x4, yt)). Then the number of prediction mistakes made by the Peareptr
on this sequence is bounded By, < ||g||? + 2 Zthl 0.

Although the Perceptron is guaranteed to be competitive wity fixed hypothesig €
Hx, the fact that its active set can grow without a bound posesiaus computational
problem. In fact, this problem is common to most kernel-dasdine methods that do not
explicitly monitor the size of.

As discussed above, our goal is to derive and analyze anegaiadiction algorithm which
resolves these problems by enforcinfp@dbound on the size of the active set. Formally,
let B be a positive integer, which we refer to as thalget parameterWe would like to
devise an algorithm which enforces the constrélifjit< B on every round. Furthermore,
we would like to prove a relative mistake bound for this aitjon, analogous to the bound
stated in Thm. 1. Regretfully, this goal turns out to be ingilole without making additional
assumptions. We show this inherent limitation by presenénsimple counterexample
which applies to any online algorithm which uses a predicfimction of the form given
in EQ. (2), and for whichl;| < B for all ¢. In this example, we show a hypothesgis H
and an arbitrarily long sequence of examples such that teridim makes a prediction
mistake on every single round whergesuffers no loss at all. We choose the instance space
X to be the set of3 + 1 standard unit vectors iR+, thatisX’ = {e;} 21" wheree; is the
vector with1 in its ¢'th coordinate and zeros elsewher€.is set to be the standard inner-
product inRE+1, that isK (x,x’) = (x,x’). Now for everyt, f, is a linear combination
of at mostB vectors fromX. Since|X| = B + 1, there exists a vectat, € X which

is currently not in the active set. Furthermoxe,is orthogonal to all of the active vectors
and thereforef;(x;) = 0. Assume without loss of generality that the online algonitive



are using predictg; to be —1 when f;(x) = 0. If on every round we were to present

the online algorithm with the examplex,, +1) then the online algorithm would make a

prediction mistake on every round. On the other hand, thethgsisy = Zf:gl e; isa

member ofH i and attains a zero hinge-loss on every round. We have fouaequesce of
examples and a fixed hypothesis (which is indeed defined bg thanB vectors fromX)
that attains a cumulative loss of zero on this sequenceewd number of mistakes made
by the online algorithm equals the number of rounds. Cleartiieorem along the lines of
Thm. 1 cannot be proven.

One way to resolve this problem is to limit the set of hypo#sese compete with to a sub-
set of H i, which would naturally excludg. In this paper, we limit the set of competitors
to hypotheses with small norms. Formally, we wish to devis®@mline algorithm which
is competitive with every hypothesis€ Hx for which ||g|| < U, for some constarnt/.
Our counterexample indicates that we cannot prove a relatistake bound witl/ set
to v/ B + 1 or greater, since that was the normgoin our counterexample. In this paper
we come close to this upper bound by proving that our algmstican compete with any

hypothesis with a norm bounded By/(B + 1)/log(B + 1).

3 A Perceptron with “Shrinking” and “Removal”’ Steps

The Perceptron algorithm will serve as our starting poinec&l that whenever the Per-
ceptron makes a prediction mistake, it updates its hypahmsadding the elemeritto

I;. Thus, on any given round, the size of its active set equasitimber of prediction
mistakes it has made so far. This implies that the Percepti@nviolate the budget con-
straint|l;| < B. We can solve this problem by removing an example from thizeset
whenever its size exceeds One simple strategy is to remove the oldest example in the
active set wheneverd;| > B. Lett be a round on which the Perceptron makes a predic-
tion mistake. We apply the following two step update. Fivgt, perform the Perceptron’s
update by adding to I;. LetI; = I, U {t} denote the resulting active set. || < B

we are done and we sét.; = I;. Otherwise, we apply emovalstep by finding the
oldest example in the active set,= min I7, and setting/; ;1 = I; \ {r+}. The resulting
algorithm is a simple modification of the kernel Perceptmwhich conforms with a fixed
budget constraint. While we are unable to prove a mistake déamthis algorithm, it is
nonetheless an important milestone on the path to an aigoritith a fixed budget and a
formal mistake bound.

The removal of the oldest active example frépmay significantly change the hypothesis
and effect its accuracy. One way to overcome this obstadtersduce the weight of old
examples in the definition of the current hypothesis. By ailig the weight of the oldest
active example, we can guarantee that the removal step wtilsignificantly effect the
accuracy of our predictions. More formally, we redefine ogpdthesis to be,

fi = Zai,tyiK(Xi7’) )

i€l

where eaclw; ; is a weight in(0, 1]. Clearly, the effect of removing, from I, depends on
the magnitude of, ;.

Using the ideas discussed above, we are now ready to outkrieargetron algorithm. The
Forgetron initialized; to be the empty set, which implicitly sefs to be the zero function.
On roundt, if a prediction mistake occurs, a three step update is padd. The first step

is the standard Perceptron update, namely, the inigebserted into the active set and the
weighto, ; is set to bel. Let I] denote the active set which results from this update, and
let f/ denote the resulting hypothesjg(x) = f:(x) + y: K (x¢, x). The second step of the
update is ashrinkingstep in which we scal¢’ by a coefficientp; € (0,1]. The value of



¢+ is intentionally left unspecified for now. Lg{’ denote the resulting hypothesis, that is,
/= ¢ f]. Settingo; 411 = ¢.0;, for all i € I}, we can write,

V(x) = Y oK (xi,x) .

iel]

The third and last step of the update is the removal step sigclabove. That is, if the bud-
get constraint is violated ar|d;| > B thenI;;, is setto bel} \ {r;} wherer, = min Ij.
Otherwise l;;1 simply equald;. The recursive definition of the weight ;, can be unrav-
eled to give the following explicit formg; ; = [[,c;, | A j>; ¢;. If the shrinking coeffi-
cients¢, are sufficiently small, then the example weights decrease rapidly with, and
particularly the weight of the oldest active example can belenarbitrarily small. Thus, if
¢, is small enough, then the removal step is guaranteed notse@y significant damage.
Alas, aggressively shrinking the online hypothesis witargwpdate might itself degrade
the performance of the online hypothesis and therefpghould not be set too small. The
delicate balance between safe removal of the oldest exaandlever-aggressive scaling is
our main challenge. To formalize this tradeoff, we begirtwifite mistake bound in Thm. 1
and investigate how it is effected by the shrinking and remheteps.

We focus first on the removal step. Létdenote the set of rounds on which the Forgetron
makes a prediction mistake and define the function,

(o, ¢, p) = (0¢)*+200(1—opu) .

Let¢ € J be a round on which/;| = B. On this round, example; is removed from the
active set. Lej; = y., f{(x,,) be the signed margin attained lfyon the active example
being removed. Finally, we abbreviate,

v, = { Ylora, b)) fted A|LI=B
T 0 otherwise

Lemma 1 below states that removing examplfrom the active set on rountdncreases the
mistake bound by,. As expectedy, decreases with the weight of the removed example,
or,t+1. In addition, it is clear from the definition of, that i, also plays a key role in
determining whethex,, can be safely removed from the active set. We note in passing
that [2] used a heuristic criterion similar tg to dynamically choose which active example
to remove on each online round.

Turning to the shrinking step, for evetye J we define,

1 it | firall = U
by = b1 ) it <U A Iferall <U
SUEL it | f > U A lfenl <U

Lemma 1 below also states that applying the shrinking steapwmdz increases the mistake
bound byU? log(1/®;). Note that if|| f;+1]| > U then®; = 1 and the shrinking step on
roundt¢ has no effect on our mistake bound. Intuitively, this is doehe fact that, in
this case, the shrinking step does not make the norifg,af smaller than the norm of our
competitor,g.

Lemma 1. Let(x1,v1),..., (%, yr) be a sequence of examples such thigk,;, x;) < 1
for all ¢ and assume that this sequence is presented to the Forgetiva budget constraint

B. Letg be a function irx for which||g|| < U, and definé; = £(g; (x;,4:)). Then,

T
M < (IIgll2 +2 Z&) + (Z U, +U? Zlog(l/@t)>
t=1

teJ teJ



The first term in the bound of Lemma 1 is identical to the misthkund of the standard
Perceptron, given in Thm. 1. The second term is the consegqueihthe removal and
shrinking steps. If we set the shrinking coefficients in saetay that the second term is at

most L, then the bound in Lemma 1 reducesMb < ||g[|* + 23>, £ + 2. This can be

restated ad/ < 2||g[* +4>, Z,, which is twice the bound of the Perceptron algorithm.
The next lemma states sufficient conditionsggrunder which the second term in Lemma 1
is indeed upper bounded B¥

Lemma 2. Assume that the conditions of Lemma 1 hold and that 83. If the shrinking
coefficientsp; are chosen such that,

15 log(B +1)
E < — E < v 7
\I/t < 32M and lOg(l/q)t) < 2(B+1) s

tedJ teJ

then the following holds,Y",,; ¥, + U2 3, log (1/®,) < & .

In the next section, we define the specific mechanism usedeblrdigetron algorithm to
choose the shrinking coefficients. Then, we conclude our analysis by arguing that this
choice satisfies the sufficient conditions stated in Lemnand,obtain a mistake bound as
described above.

4 The Forgetron Algorithm

We are now ready to define the specific choiceppfused by the Forgetron algorithm.
On each round, the Forgetron chooggdo be the maximal value if0, 1] for which the
damage caused by the removal step is still manageable. fity dar construction, define
Jy={ieJ : i<ttandM; = |J;|. In words,J; is the set of rounds on which the
algorithm made a mistake up until roundand M; is the size of this set. We can now
rewrite the first condition in Lemma 2 as,

15

E v, < — Myp . )
32

teJp

Instead of the above condition, the Forgetron enforcesdlh@xfing stronger condition,

15
) 1,...,T v, < —M,; . 4
VZE{, ’ }7 tEZJ t = 39 ()

This is done as follows. Defing);, = ZteJH ¥,. Lets denote a round on which the
algorithm makes a prediction mistake and on which an exammist be removed from
the active set. Thé&th constraint in Eq. (4) can be rewritten 85 + Q; < :13—; M;. The
Forgetron sets); to be the maximal value if0, 1] for which this constraint holds, namely,
¢; = max {¢ € (0,1] : (o, ;, ¢, i) + Q; < 2M;}. Note thatQ; does not depend
on ¢ and that¥ (., ;, ¢, 11;) iS @ quadratic expression i Therefore, the value af; can
be found analytically. The pseudo-code of the Forgetroarélym is given in Fig. 1.

Having described our algorithm, we now turn to its analydis.prove a mistake bound
it suffices to show that the two conditions stated in Lemma l&.h®he first condition of

the lemma follows immediately from the definition ¢f. Using strong induction on the
size of J, we can show that the second condition holds as well. Usieggttwo facts, the
following theorem follows as a direct corollary of Lemma Iddremma 2.



INPUT: Mercer kernelK (-, ) ; budget parameteB > 0
INITIALIZE: [y =0 ; fi=0; Q1 =0; My=0
For t=1,2,...
receive instanceg, ; predictlabel: sighf;(x:))
receive correct labe},

If yefe(xt) >0
setlyy1 =1, Quy1 = Qy, My =My_y, andVie I, seto; 11 =0y
Else
setMy; = M;_1 +1
(1) setl; =1, U{t}
If |I]] < B
setlip1 =1, Qi1 = Quory =1, andVi € I,1q seto; 11 =044
Else
(2) definer; = min I;
choosep; = max{¢ € (0,1] : W(or, ¢, &, pue) + Q1 < 53 My}
seto,, =1landVi € I seto; 41 = g0y
setQiy1 = Q¢ + ¥y
(3) setlipq =17\ {rs}

definefii1 =Y, gier1yiK (i, )

Figure 1: The Forgetron algorithm.

Theorem 2. Let(x1,41), - - ., (x1, y7) be a sequence of examples such figk,, x;) < 1
for all t. Assume that this sequence is presented to the Forgetronitialign from Fig. 1 with
a budget parameteB > 83. Letg be a function inH for which||g|| < U, whereU =
1V (B +1)/log(B + 1), and define; = £(g; (x;,y:)). Then, the number of prediction
mistakes made by the Forgetron on this sequence is at most,

T
M < 2g]? + 4374

t=1
5 Experiments and Discussion

In this section we present preliminary experimental reswhich demonstrate the mer-
its of the Forgetron algorithm. We compared the performasfdbe Forgetron with the
method described in [2], which we abbreviate by CKS. When tK& @lgorithm exceeds
its budget, it removes the active example whose margin woelthe largest after the re-
moval. Our experiment was performed with two standard @é&tagthe MNIST dataset,
which consists of 60,000 training examples, and the cemsusvne (adult) dataset, with
200,000 examples. The labels of the MNIST dataset are thégitGcthsses, while the set-
ting we consider in this paper is that of binary classifiaat/e therefore generated binary
problems by splitting the0 labels into two sets of equal size in all possible ways, itogal
(10)/2 = 126 classification problems. For each budget value, we ran thalgorithms on
aﬁ 126 binary problems and averaged the results. The labéh® census-income dataset
are already binary, so we ran the two algorithms on 10 diffepermutations of the ex-
amples and averaged the results. Both algorithms used aléfiree non-homogeneous
polynomial kernel. The results of these experiments arensanized in Fig. 2. The ac-
curacy of the standard Perceptron (which does not depend)ds marked in each plot
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Figure 2:The error of different budget algorithms as a function of the budget’s on the census-

income (adult) dataset (left) and on the MNIST dataset (right). Theepean'’s active set reaches
a size of 14,626 for census-income and 1,886 for MNIST. Thedp#man’s error is marked with a
horizontal dashed black line.

using a horizontal dashed black line. Note that the Forgetutperforms CKS on both
datasets, especially when the valugis small. In fact, on the census-income dataset, the
Forgetron achieves almost the same performance as thepRercwith only a fifth of the
active examples. In contrast to the Forgetron, which perfowell on both datasets, the
CKS algorithm performs rather poorly on the census-incomtaskt. This can be partly
attributed to the different level of difficulty of the two dsification tasks. It turns out that
the performance of CKS deteriorates as the classificatelniacomes more difficult. In
contrast, the Forgetron seems to perform well on both eaddifficult classification tasks.

In this paper we described the Forgetron algorithm, whiehkisrnel-based online learning
algorithm with a fixed memory budget. We proved that the Fmogeis competitive with
any hypothesis whose norm is upper boundedby= %,/(B+1)/log(B +1). We
further argued that no algorithm with a budget®factive examples can be competitive
with every hypothesis whose norm {¢B + 1, on every input sequence. Bridging the
small gap betweetV and+/B + 1 remains an open problem. The analysis presented in
this paper can be used to derive a family of online algorithofisvhich the Forgetron is
only one special case. This family of algorithms, as well@®glete proofs of our formal
claims and extensive experiments, will be presented in @ Vension of this paper.
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