
The Forgetron:
A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{oferd,shais,singer}@cs.huji.ac.il

Abstract

The Perceptron algorithm, despite its simplicity, often performs well on
online classification tasks. The Perceptron becomes especially effective
when it is used in conjunction with kernels. However, a common dif-
ficulty encountered when implementing kernel-based onlinealgorithms
is the amount of memory required to store the online hypothesis, which
may grow unboundedly. In this paper we present and analyze the For-
getron algorithm for kernel-based online learning on a fixedmemory
budget. To our knowledge, this is the first online learning algorithm
which, on one hand, maintains astrict limit on the number of exam-
ples it stores and, on the other hand, entertains a relative mistake bound.
In addition to the formal results, we also present experiments with real
datasets which underscore the merits of our approach.

1 Introduction

The introduction of the Support Vector Machine (SVM) [8] sparked a widespread interest
in kernel methods as a means of solving (binary) classification problems. Although SVM
was initially stated as a batch-learning technique, it significantly influenced the develop-
ment of kernel methods in the online-learning setting. Online classification algorithms that
can incorporate kernels include the Perceptron [6], ROMMA [5], ALMA [3], NORMA [4],
Ballseptron [7], and the Passive-Aggressive family of algorithms [1]. Each of these algo-
rithms observes examples in a sequence of rounds, and constructs its classification function
incrementally, by storing a subset of the observed examplesin its internal memory. The
classification function is then defined by a kernel-dependent combination of the stored ex-
amples. This set of stored examples is the online equivalentof thesupport setof SVMs,
however in contrast to the support, it continually changes as learning progresses. In this
paper, we call this set theactive set, as it includes those examples that actively define the
current classifier. Typically, an example is added to the active set every time the online al-
gorithm makes a prediction mistake, or when its confidence ina prediction is inadequately
low. A rapid growth of the active set can lead to significant computational difficulties. Nat-
urally, since computing devices have bounded memory resources, there is the danger that
an online algorithm would require more memory than is physically available. This problem
becomes especially eminent in cases where the online algorithm is implemented as part of
a specialized hardware system with a small memory, such as a mobile telephone or an au-

tonomous robot. Moreover, an excessively large active set can lead to unacceptably long
running times, as the time-complexity of each online round scales linearly with the size of
the active set.

Crammer, Kandola, and Singer [2] first addressed this problem by describing an online
kernel-based modification of the Perceptron algorithm in which the active set does not ex-
ceed a predefinedbudget. Their algorithm removes redundant examples from the active set
so as to make the best use of the limited memory resource. Weston, Bordes and Bottou [9]
followed with their own online kernel machine on a budget. Both techniques work rela-
tively well in practice, however they both lack a theoretical guarantee on their prediction
accuracy. In this paper we present the Forgetron algorithm for online kernel-based classi-
fication. To the best of our knowledge, the Forgetron is the first online algorithm with a
fixed memory budget which also entertains a formal worst-case mistake bound. We name
our algorithm the Forgetron since its update builds on that of the Perceptron and since it
gradually forgets active examples as learning progresses.

This paper is organized as follows. In Sec. 2 we begin with a more formal presentation of
our problem and discuss some difficulties in proving mistakebounds for kernel-methods
on a budget. In Sec. 3 we present an algorithmic framework foronline prediction with a
predefined budget of active examples. Then in Sec. 4 we derivea concrete algorithm within
this framework and analyze its performance. Formal proofs of our claims are omitted due
to the lack of space. Finally, we present an empirical evaluation of our algorithm in Sec. 5.

2 Problem Setting

Online learning is performed in a sequence of consecutive rounds. On roundt the online
algorithm observes an instancext, which is drawn from some predefined instance domain
X . The algorithm predicts the binary label associated with that instance and is then pro-
vided with the correct labelyt ∈ {−1,+1}. At this point, the algorithm may use the
instance-label pair(xt, yt) to improve its prediction mechanism. The goal of the algorithm
is to correctly predict as many labels as possible.

The predictions of the online algorithm are determined by ahypothesiswhich is stored
in its internal memory and is updated from round to round. We denote the hypothesis
used on roundt by ft. Our focus in this paper is on margin based hypotheses, namely,
ft is a function fromX to R where sign(ft(xt)) constitutes the actual binary prediction
and |ft(xt)| is the confidence in this prediction. The termyf(x) is called themargin
of the prediction and is positive whenevery and sign(f(x)) agree. We can evaluate the
performance of a hypothesis on a given example(x, y) in one of two ways. First, we can
check whether the hypothesis makes a prediction mistake, namely determine whethery =
sign(f(x)) or not. Throughout this paper, we useM to denote the number of prediction
mistakes made by an online algorithm on a sequence of examples (x1, y1), . . . , (xT , yT).
The second way we evaluate the predictions of a hypothesis isby using thehinge-loss
function, defined as,

ℓ
(

f ; (x, y)
)

=

{

0 if yf(x) ≥ 1
1 − yf(x) otherwise . (1)

The hinge-loss penalizes a hypothesis for any margin less than 1. Additionally, if y 6=
sign(f(x)) thenℓ(f, (x, y)) ≥ 1 and therefore thecumulative hinge-losssuffered over a
sequence of examples upper boundsM . The algorithms discussed in this paper use kernel-
based hypotheses that are defined with respect to a kernel operatorK : X ×X → R which
adheres to Mercer’s positivity conditions [8]. A kernel-based hypothesis takes the form,

f(x) =

k
∑

i=1

αiK(xi,x) , (2)

wherex1, . . . ,xk are members ofX andα1, . . . , αk are real weights. To facilitate the
derivation of our algorithms and their analysis, we associate a reproducing kernel Hilbert
space (RKHS) withK in the standard way common to all kernel methods. Formally,
let HK be the closure of the set of all hypotheses of the form given inEq. (2). For
any two functions,f(x) =

∑k
i=1

αiK(xi,x) and g(x) =
∑l

j=1
βjK(zj ,x), define

the inner product between them to be,〈f, g〉 =
∑k

i=1

∑l
j=1

αiβjK(xi, zj). This inner-

product naturally induces a norm defined by‖f‖ = 〈f, f〉1/2 and a metric‖f − g‖ =
(〈f, f〉 − 2〈f, g〉 + 〈g, g〉)1/2. These definitions play an important role in the analysis of
our algorithms. Online kernel methods typically restrict themselves to hypotheses that are
defined by some subset of the examples observed on previous rounds. That is, the hy-
pothesis used on roundt takes the form,ft(x) =

∑

i∈It
αiK(xi,x), whereIt is a subset

of {1, . . . , (t-1)} andxi is the example observed by the algorithm on roundi. As stated
above,It is called the active set, and we say that examplexi is activeon roundt if i ∈ It.

Perhaps the most well known online algorithm for binary classification is the Percep-
tron [6]. Stated in the form of a kernel method, the hypotheses generated by the Perceptron
take the formft(x) =

∑

i∈It
yiK(xi,x). Namely, the weight assigned to each active

example is either+1 or −1, depending on the label of that example. The Perceptron ini-
tializesI1 to be the empty set, which implicitly setsf1 to be the zero function. It then
updates its hypothesis only on rounds where a prediction mistake is made. Concretely, on
roundt, if ft(xt) 6= yt then the indext is inserted into the active set. As a consequence, the
size of the active set on roundt equals the number of prediction mistakes made on previous
rounds. A relative mistake bound can be proven for the Perceptron algorithm. The bound
holds for any sequence of instance-label pairs, and compares the number of mistakes made
by the Perceptron with the cumulative hinge-loss of any fixedhypothesisg ∈ HK , even
one defined with prior knowledge of the sequence.

Theorem 1. Let K be a Mercer kernel and let(x1, y1), . . . , (xT , yT) be a sequence of
examples such thatK(xt,xt) ≤ 1 for all t. Let g be an arbitrary function inHK and
defineℓ̂t = ℓ

(

g; (xt, yt)
)

. Then the number of prediction mistakes made by the Perceptron

on this sequence is bounded by,M ≤ ‖g‖2 + 2
∑T

t=1
ℓ̂t.

Although the Perceptron is guaranteed to be competitive with any fixed hypothesisg ∈
HK , the fact that its active set can grow without a bound poses a serious computational
problem. In fact, this problem is common to most kernel-based online methods that do not
explicitly monitor the size ofIt.

As discussed above, our goal is to derive and analyze an online prediction algorithm which
resolves these problems by enforcing afixedbound on the size of the active set. Formally,
let B be a positive integer, which we refer to as thebudget parameter. We would like to
devise an algorithm which enforces the constraint|It| ≤ B on every roundt. Furthermore,
we would like to prove a relative mistake bound for this algorithm, analogous to the bound
stated in Thm. 1. Regretfully, this goal turns out to be impossible without making additional
assumptions. We show this inherent limitation by presenting a simple counterexample
which applies to any online algorithm which uses a prediction function of the form given
in Eq. (2), and for which|It| ≤ B for all t. In this example, we show a hypothesisg ∈ HK

and an arbitrarily long sequence of examples such that the algorithm makes a prediction
mistake on every single round whereasg suffers no loss at all. We choose the instance space
X to be the set ofB+1 standard unit vectors inRB+1, that isX = {ei}B+1

i=1
whereei is the

vector with1 in its i’th coordinate and zeros elsewhere.K is set to be the standard inner-
product inR

B+1, that isK(x,x′) = 〈x,x′〉. Now for everyt, ft is a linear combination
of at mostB vectors fromX . Since|X | = B + 1, there exists a vectorxt ∈ X which
is currently not in the active set. Furthermore,xt is orthogonal to all of the active vectors
and thereforeft(xt) = 0. Assume without loss of generality that the online algorithm we

are using predictsyt to be−1 whenft(x) = 0. If on every round we were to present
the online algorithm with the example(xt,+1) then the online algorithm would make a
prediction mistake on every round. On the other hand, the hypothesisḡ =

∑B+1

i=1
ei is a

member ofHK and attains a zero hinge-loss on every round. We have found a sequence of
examples and a fixed hypothesis (which is indeed defined by more thanB vectors fromX)
that attains a cumulative loss of zero on this sequence, while the number of mistakes made
by the online algorithm equals the number of rounds. Clearly, a theorem along the lines of
Thm. 1 cannot be proven.

One way to resolve this problem is to limit the set of hypotheses we compete with to a sub-
set ofHK , which would naturally excludēg. In this paper, we limit the set of competitors
to hypotheses with small norms. Formally, we wish to devise an online algorithm which
is competitive with every hypothesisg ∈ HK for which ‖g‖ ≤ U , for some constantU .
Our counterexample indicates that we cannot prove a relative mistake bound withU set
to

√
B + 1 or greater, since that was the norm ofḡ in our counterexample. In this paper

we come close to this upper bound by proving that our algorithms can compete with any
hypothesis with a norm bounded by1

4

√

(B + 1)/ log(B + 1).

3 A Perceptron with “Shrinking” and “Removal” Steps

The Perceptron algorithm will serve as our starting point. Recall that whenever the Per-
ceptron makes a prediction mistake, it updates its hypothesis by adding the elementt to
It. Thus, on any given round, the size of its active set equals the number of prediction
mistakes it has made so far. This implies that the Perceptronmay violate the budget con-
straint|It| ≤ B. We can solve this problem by removing an example from the active set
whenever its size exceedsB. One simple strategy is to remove the oldest example in the
active set whenever|It| > B. Let t be a round on which the Perceptron makes a predic-
tion mistake. We apply the following two step update. First,we perform the Perceptron’s
update by addingt to It. Let I ′t = It ∪ {t} denote the resulting active set. If|I ′t| ≤ B
we are done and we setIt+1 = I ′t. Otherwise, we apply aremovalstep by finding the
oldest example in the active set,rt = min I ′t, and settingIt+1 = I ′t \ {rt}. The resulting
algorithm is a simple modification of the kernel Perceptron,which conforms with a fixed
budget constraint. While we are unable to prove a mistake bound for this algorithm, it is
nonetheless an important milestone on the path to an algorithm with a fixed budget and a
formal mistake bound.

The removal of the oldest active example fromIt may significantly change the hypothesis
and effect its accuracy. One way to overcome this obstacle isto reduce the weight of old
examples in the definition of the current hypothesis. By controlling the weight of the oldest
active example, we can guarantee that the removal step will not significantly effect the
accuracy of our predictions. More formally, we redefine our hypothesis to be,

ft =
∑

i∈It

σi,tyiK(xi, ·) ,

where eachσi,t is a weight in(0, 1]. Clearly, the effect of removingrt from It depends on
the magnitude ofσrt,t.

Using the ideas discussed above, we are now ready to outline the Forgetron algorithm. The
Forgetron initializesI1 to be the empty set, which implicitly setsf1 to be the zero function.
On roundt, if a prediction mistake occurs, a three step update is performed. The first step
is the standard Perceptron update, namely, the indext is inserted into the active set and the
weightσt,t is set to be1. Let I ′t denote the active set which results from this update, and
let f ′

t denote the resulting hypothesis,f ′
t(x) = ft(x)+ ytK(xt,x). The second step of the

update is ashrinkingstep in which we scalef ′ by a coefficientφt ∈ (0, 1]. The value of

φt is intentionally left unspecified for now. Letf ′′
t denote the resulting hypothesis, that is,

f ′′
t = φtf

′
t . Settingσi,t+1 = φtσi,t for all i ∈ I ′t, we can write,

f ′′
t (x) =

∑

i∈I′

t

σi,t+1yiK(xi,x) .

The third and last step of the update is the removal step discussed above. That is, if the bud-
get constraint is violated and|I ′t| > B thenIt+1 is set to beI ′t \ {rt} wherert = min I ′t.
Otherwise,It+1 simply equalsI ′t. The recursive definition of the weightσi,t can be unrav-
eled to give the following explicit form,σi,t =

∏

j∈It−1 ∧ j≥i φj . If the shrinking coeffi-
cientsφt are sufficiently small, then the example weightsσi,t decrease rapidly witht, and
particularly the weight of the oldest active example can be made arbitrarily small. Thus, if
φt is small enough, then the removal step is guaranteed not to cause any significant damage.
Alas, aggressively shrinking the online hypothesis with every update might itself degrade
the performance of the online hypothesis and thereforeφt should not be set too small. The
delicate balance between safe removal of the oldest exampleand over-aggressive scaling is
our main challenge. To formalize this tradeoff, we begin with the mistake bound in Thm. 1
and investigate how it is effected by the shrinking and removal steps.

We focus first on the removal step. LetJ denote the set of rounds on which the Forgetron
makes a prediction mistake and define the function,

Ψ(σ , φ , µ) = (σ φ)2 + 2σ φ(1 − φ µ) .

Let t ∈ J be a round on which|It| = B. On this round, examplert is removed from the
active set. Letµt = yrt

f ′
t(xrt

) be the signed margin attained byf ′
t on the active example

being removed. Finally, we abbreviate,

Ψt =

{

Ψ(σrt,t , φt , µt) if t ∈ J ∧ |It| = B
0 otherwise .

Lemma 1 below states that removing examplert from the active set on roundt increases the
mistake bound byΨt. As expected,Ψt decreases with the weight of the removed example,
σrt,t+1. In addition, it is clear from the definition ofΨt that µt also plays a key role in
determining whetherxrt

can be safely removed from the active set. We note in passing
that [2] used a heuristic criterion similar toµt to dynamically choose which active example
to remove on each online round.

Turning to the shrinking step, for everyt ∈ J we define,

Φt =

1 if ‖ft+1‖ ≥ U
φt if ‖f ′

t‖ ≤ U ∧ ‖ft+1‖ < U
φt‖f ′

t
‖

U if ‖f ′
t‖ > U ∧ ‖ft+1‖ < U

.

Lemma 1 below also states that applying the shrinking step onroundt increases the mistake
bound byU2 log(1/Φt). Note that if‖ft+1‖ ≥ U thenΦt = 1 and the shrinking step on
round t has no effect on our mistake bound. Intuitively, this is due to the fact that, in
this case, the shrinking step does not make the norm offt+1 smaller than the norm of our
competitor,g.

Lemma 1. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such thatK(xt,xt) ≤ 1
for all t and assume that this sequence is presented to the Forgetron with a budget constraint
B. Letg be a function inHK for which‖g‖ ≤ U , and definêℓt = ℓ

(

g; (xt, yt)
)

. Then,

M ≤
(

‖g‖2 + 2

T
∑

t=1

ℓ̂t

)

+

(

∑

t∈J

Ψt + U2
∑

t∈J

log (1/Φt)

)

.

The first term in the bound of Lemma 1 is identical to the mistake bound of the standard
Perceptron, given in Thm. 1. The second term is the consequence of the removal and
shrinking steps. If we set the shrinking coefficients in sucha way that the second term is at
most M

2
, then the bound in Lemma 1 reduces toM ≤ ‖g‖2 + 2

∑

t ℓ̂t + M
2

. This can be

restated asM ≤ 2‖g‖2 + 4
∑

t ℓ̂t, which is twice the bound of the Perceptron algorithm.
The next lemma states sufficient conditions onφt under which the second term in Lemma 1
is indeed upper bounded byM

2
.

Lemma 2. Assume that the conditions of Lemma 1 hold and thatB ≥ 83. If the shrinking
coefficientsφt are chosen such that,

∑

t∈J

Ψt ≤ 15

32
M and

∑

t∈J

log (1/Φt) ≤ log(B + 1)

2(B + 1)
M ,

then the following holds,
∑

t∈J Ψt + U2
∑

t∈J log (1/Φt) ≤ M
2

.

In the next section, we define the specific mechanism used by the Forgetron algorithm to
choose the shrinking coefficientsφt. Then, we conclude our analysis by arguing that this
choice satisfies the sufficient conditions stated in Lemma 2,and obtain a mistake bound as
described above.

4 The Forgetron Algorithm

We are now ready to define the specific choice ofφt used by the Forgetron algorithm.
On each round, the Forgetron choosesφt to be the maximal value in(0, 1] for which the
damage caused by the removal step is still manageable. To clarify our construction, define
Jt = {i ∈ J : i ≤ t} andMt = |Jt|. In words,Jt is the set of rounds on which the
algorithm made a mistake up until roundt, andMt is the size of this set. We can now
rewrite the first condition in Lemma 2 as,

∑

t∈JT

Ψt ≤ 15

32
MT . (3)

Instead of the above condition, the Forgetron enforces the following stronger condition,

∀i ∈ {1, . . . , T},
∑

t∈Ji

Ψt ≤ 15

32
Mi . (4)

This is done as follows. Define,Qi =
∑

t∈Ji−1
Ψt. Let i denote a round on which the

algorithm makes a prediction mistake and on which an examplemust be removed from
the active set. Thei’th constraint in Eq. (4) can be rewritten asΨi + Qi ≤ 15

32
Mi. The

Forgetron setsφi to be the maximal value in(0, 1] for which this constraint holds, namely,
φi = max

{

φ ∈ (0, 1] : Ψ(σri,i , φ , µi) + Qi ≤ 15

32
Mi

}

. Note thatQi does not depend
on φ and thatΨ(σri,i, φ, µi) is a quadratic expression inφ. Therefore, the value ofφi can
be found analytically. The pseudo-code of the Forgetron algorithm is given in Fig. 1.

Having described our algorithm, we now turn to its analysis.To prove a mistake bound
it suffices to show that the two conditions stated in Lemma 2 hold. The first condition of
the lemma follows immediately from the definition ofφt. Using strong induction on the
size ofJ , we can show that the second condition holds as well. Using these two facts, the
following theorem follows as a direct corollary of Lemma 1 and Lemma 2.

INPUT: Mercer kernelK(·, ·) ; budget parameterB > 0

INITIALIZE : I1 = ∅ ; f1 ≡ 0 ; Q1 = 0 ; M0 = 0

For t = 1, 2, . . .
receive instancext ; predict label: sign(ft(xt))
receive correct labelyt

If ytft(xt) > 0
set It+1 = It, Qt+1 = Qt, Mt = Mt−1, and ∀i ∈ It set σi,t+1 = σi,t

Else
setMt = Mt−1 + 1

(1) setI ′t = It ∪ {t}
If |I ′t| ≤ B

set It+1 = I ′t, Qt+1 = Qt, σt,t = 1, and ∀i ∈ It+1 set σi,t+1 = σi,t

Else
(2) definert = min It

chooseφt = max{φ ∈ (0, 1] : Ψ(σrt,t , φ , µt) + Qt ≤ 15

32
Mt}

set σt,t = 1 and∀i ∈ I ′t set σi,t+1 = φt σi,t

setQt+1 = Qt + Ψt

(3) set It+1 = I ′t \ {rt}
defineft+1 =

∑

i∈It+1
σi,t+1yiK(xi, ·)

Figure 1: The Forgetron algorithm.

Theorem 2. Let(x1, y1), . . . , (xT , yT) be a sequence of examples such thatK(xt,xt) ≤ 1
for all t. Assume that this sequence is presented to the Forgetron algorithm from Fig. 1 with
a budget parameterB ≥ 83. Let g be a function inHK for which‖g‖ ≤ U , whereU =
1

4

√

(B + 1)/ log(B + 1), and definêℓt = ℓ
(

g; (xt, yt)
)

. Then, the number of prediction
mistakes made by the Forgetron on this sequence is at most,

M ≤ 2 ‖g‖2 + 4

T
∑

t=1

ℓ̂t

5 Experiments and Discussion

In this section we present preliminary experimental results which demonstrate the mer-
its of the Forgetron algorithm. We compared the performanceof the Forgetron with the
method described in [2], which we abbreviate by CKS. When the CKS algorithm exceeds
its budget, it removes the active example whose margin wouldbe the largest after the re-
moval. Our experiment was performed with two standard datasets: the MNIST dataset,
which consists of 60,000 training examples, and the census-income (adult) dataset, with
200,000 examples. The labels of the MNIST dataset are the 10 digit classes, while the set-
ting we consider in this paper is that of binary classification. We therefore generated binary
problems by splitting the10 labels into two sets of equal size in all possible ways, totaling
(

10

5

)

/2 = 126 classification problems. For each budget value, we ran the two algorithms on
all 126 binary problems and averaged the results. The labelsin the census-income dataset
are already binary, so we ran the two algorithms on 10 different permutations of the ex-
amples and averaged the results. Both algorithms used a fifthdegree non-homogeneous
polynomial kernel. The results of these experiments are summarized in Fig. 2. The ac-
curacy of the standard Perceptron (which does not depend onB) is marked in each plot

1000 2000 3000 4000 5000 6000

0.05

0.1

0.15

0.2

0.25

0.3

budget size − B

av
er

ag
e

er
ro

r

Forgetron
CKS

200 400 600 800 1000 1200 1400 1600 1800

0.05

0.1

0.15

0.2

0.25

0.3

budget size − B

av
er

ag
e

er
ro

r

Forgetron
CKS

Figure 2:The error of different budget algorithms as a function of the budget sizeB on the census-
income (adult) dataset (left) and on the MNIST dataset (right). The Perceptron’s active set reaches
a size of 14,626 for census-income and 1,886 for MNIST. The Perceptron’s error is marked with a
horizontal dashed black line.

using a horizontal dashed black line. Note that the Forgetron outperforms CKS on both
datasets, especially when the value ofB is small. In fact, on the census-income dataset, the
Forgetron achieves almost the same performance as the Perceptron with only a fifth of the
active examples. In contrast to the Forgetron, which performs well on both datasets, the
CKS algorithm performs rather poorly on the census-income dataset. This can be partly
attributed to the different level of difficulty of the two classification tasks. It turns out that
the performance of CKS deteriorates as the classification task becomes more difficult. In
contrast, the Forgetron seems to perform well on both easy and difficult classification tasks.

In this paper we described the Forgetron algorithm, which isa kernel-based online learning
algorithm with a fixed memory budget. We proved that the Forgetron is competitive with
any hypothesis whose norm is upper bounded byU = 1

4

√

(B + 1)/ log(B + 1). We
further argued that no algorithm with a budget ofB active examples can be competitive
with every hypothesis whose norm is

√
B + 1, on every input sequence. Bridging the

small gap betweenU and
√

B + 1 remains an open problem. The analysis presented in
this paper can be used to derive a family of online algorithms, of which the Forgetron is
only one special case. This family of algorithms, as well as complete proofs of our formal
claims and extensive experiments, will be presented in a long version of this paper.

References

[1] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive
aggressive algorithms. Technical report, The Hebrew University, 2005.

[2] K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget.NIPS, 2003.
[3] C. Gentile. A new approximate maximal margin classification algorithm.JMLR, 2001.
[4] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE

Transactions on Signal Processing, 52(8):2165–2176, 2002.
[5] Y. Li and P. M. Long. The relaxed online maximum margin algorithm. NIPS, 1999.
[6] F. Rosenblatt. The Perceptron: A probabilistic model for information storage and

organization in the brain.Psychological Review, 65:386–407, 1958.
[7] S. Shalev-Shwartz and Y. Singer. A new perspective on an old perceptron algorithm.

COLT, 2005.
[8] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[9] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget.

AISTATS, 2005.

