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Abstract. We study the problem of online learning of multiple tasks
in parallel. On each online round, the algorithm receives an instance
and makes a prediction for each one of the parallel tasks. We consider
the case where these tasks all contribute toward a common goal. We
capture the relationship between the tasks by using a single global loss
function to evaluate the quality of the multiple predictions made on each
round. Specifically, each individual prediction is associated with its own
individual loss, and then these loss values are combined using a global
loss function. We present several families of online algorithms which can
use any absolute norm as a global loss function. We prove worst-case
relative loss bounds for all of our algorithms.

1 Introduction

Multitask learning is the problem of learning several related problems in parallel.
In this paper, we discuss the multitask learning problem in the online learning
context. We focus on the possibility that the learning tasks contribute toward a
common goal. Our hope is that we can benefit by taking account of this to learn
the tasks jointly, as opposed to learning each task independently.

For concreteness, we focus on the task of binary classification, and note that
our algorithms and analysis can be adapted to regression problems using ideas in
[1]. In the online multitask classification setting, we are faced with k separate on-
line binary classification problems, in parallel. The online learning process takes
place in a sequence of rounds. At the beginning of round t, the algorithm observes
a set of k instances, one for each of the binary classification problems. The algo-
rithm predicts the binary label of each of the instances it has observed, and then
receives the correct label of each instance. At this point, each of the algorithm’s
predictions is associated with a non-negative loss, and we use ℓt = (ℓt,1, . . . , ℓt,k)
to denote the k-coordinate vector whose elements are the individual loss values
of the respective tasks. Assume that we selected, ahead of time, a global loss

function L : R
k → R+, which is used to combine these individual loss values into

a single number, and define the global loss attained on round t to be L(ℓt). At
the end of the online round, the algorithm may use the k new labeled examples
it has obtained to improve its prediction mechanism for the rounds to come. The
goal of the learning algorithm is to suffer the smallest possible cumulative loss
over the course of T rounds,

∑T
t=1 L(ℓt).



The choice of the global loss function captures the overall consequences of
the individual prediction errors, and therefore how the algorithm prioritizes cor-
recting errors. For example, if L(ℓt) is defined to be

∑k
j=1 ℓt,j then the online

algorithm is penalized equally for errors on any of the tasks; this results in effec-
tively treating the tasks independently. On the other hand, if L(ℓt) = maxj ℓt,j

then the algorithm is only interested in the worst mistake made on every round.
We do not assume that the datasets of the various tasks are similar or otherwise
related. Moreover, the examples presented to the algorithm for each task may
come from different domains and may possess different characteristics. The mul-
tiple tasks are tied together by the way we define the objective of our algorithm.

In this paper, we focus on the case where the global loss function is an
absolute norm. A norm ‖ · ‖ is a function such that ‖v‖ > 0 for all v 6= 0,
‖0‖ = 0, ‖λv‖ = |λ|‖v‖ for all v and all λ ∈ R, and which satisfies the triangle
inequality. A norm is said to be absolute if ‖v‖ = ‖|v|‖ for all v, where |v| is
obtained by replacing each component of v with its absolute value. The most
well-known family of absolute norms is the family of p-norms (also called Lp

norms), defined for all p ≥ 1 by ‖v‖p = (
∑n

j=1 |vj |p)1/p. A special member of
this family is the L∞ norm, which is defined to be the limit of the above when p
tends to infinity, and can be shown to equal maxj |vj |. A less popular family of
absolute norms is the family of r-max norms. For any integer r between 1 and k,
the r-max norm of v ∈ R

k is the sum of the absolute values of the r absolutely
largest components of v. Formally,

‖v‖r-max =
r∑

j=1

|vπ(j)| where |vπ(1)| ≥ |vπ(2)| ≥ . . . ≥ |vπ(k)| .

Note that both the L1 norm and L∞ norm are special cases of the r-max norm,
as well as being p-norms.

On each online round, we balance a trade-off between retaining the informa-
tion acquired on previous rounds and modifying our hypotheses based on the
new examples obtained on this round. Instead of balancing this trade-off indi-
vidually for each of the learning tasks, as would be done naively, we balance it
for all of the tasks jointly. By doing so, we allow ourselves to make bigger mod-
ifications to some of the hypotheses at the expense of the others. To motivate
our approach, we present a handful of concrete examples.

Multiclass Classification using the L∞ Norm Assume that we are faced with a
multiclass classification problem, where the size of the label set is k. One way
of solving this problem is by learning k binary classifiers, where each classifier is
trained to distinguish between one of the classes and the rest of the classes, the
one-vs-rest method. If all of the binary classifiers make correct predictions, we
can correctly predict the multiclass label. Otherwise, a single binary mistake is
as bad as many binary mistakes. Therefore, we only care about the worst binary
prediction on round t, and we do so by setting the global loss to be ‖ℓt‖∞.

Vector-Valued Regression using the L2 Norm Let us deviate momentarily from
the binary classification setting, and assume that we are faced with multiple



regression problems. Specifically, assume that our task is to predict the three-
dimensional position of an object. Each of the three coordinates is predicted
using an individual regressor, and the regression loss for each task is simply the
absolute difference between the true and the predicted value on the respective
axis. In this case, the most appropriate global loss function is the L2 norm, which
maps the vector of individual losses to the Euclidean distance between the true
and predicted 3-D targets. (Note that we take the actual Euclidean distance and
not the squared Euclidean distance often minimized in regression settings).

Error Correcting Output Codes and the r-max Norm Error Correcting Output
Codes is a technique for reducing a multiclass classification problem to multiple
binary classification problems [2]. The power of this technique lies in the fact
that a correct multiclass prediction can be made even when a few of the binary
predictions are wrong. The reduction is represented by a code matrix M ∈
{−1,+1}s,k, where s is the number of multiclass labels and k is the number of
binary problems used to encode the original multiclass problem. Each row in M
represents one of the s multiclass labels, and each column induces one of the k
binary classification problems. Given a multiclass training set {(xi, yi)}m

i=1, with
labels yi ∈ {1, . . . , s}, the binary problem induced by column j is to distinguish
between the positive examples {(xi, yi : Myi,j = +1} and negative examples
{(xi, yi : Myi,j = −1}. When a new instance is observed, applying the k binary
classifiers to it gives a vector of binary predictions, ŷ = (ŷ1, . . . , ŷk) ∈ {−1,+1}k.
We then predict the multiclass label of this instance to be the index of the row
in M which is closest to ŷ in Hamming distance. Define the code distance of
M , denoted by d(M), to be the minimal Hamming distance between any two
rows in M . It is straightforward to show that a correct multiclass prediction can
be guaranteed as long as the number of binary mistakes made on this instance
is less than d(M)/2. In other words, making d(M)/2 binary mistakes is as bad
as making more binary mistakes. Let r = d(M)/2. If the binary classifiers are
trained in the online multitask setting, we should only be interested in whether
the r’th largest loss is less than 1, which would imply that a correct multiclass
prediction can be guaranteed. Regretfully, taking the r’th largest element of a
vector (in absolute value) does not constitute a norm and thus does not fit in
our setting. However, the r-max norm defined above can serve as a proxy.

In this paper, we present three families of online multitask algorithms. Each
family includes algorithms for all the absolute norms. All of the algorithms pre-
sented in this paper follow the general skeleton outlined in Fig. 1. Specifically,
all of our algorithms use an additive update rule, which enables us to transform
them into kernel methods. For each algorithm we prove a relative loss bound,
namely, we show that the cumulative global loss attained by the algorithm is
not much greater than the cumulative loss attained by any fixed set of k linear
hypotheses, even one defined in hindsight.

Much previous work on theoretical and applied multitask learning has con-
cerned how to take advantage of cases in which a number of learning problems are
related [3–8]; in contrast, we do not assume that the tasks are related and instead
we consider how to take account of common consequences of errors. Kivinen and



input: norm ‖ · ‖

initialize: w1,1 = . . . = w1,k = (0, . . . , 0)

for t = 1, 2, . . .

• receive xt,1, . . . ,xt,k

• predict sign(wt,j · xt,j) [1 ≤ j ≤ k]

• receive yt,1, . . . , yt,k

• calculate ℓt,j =
ˆ

1 − yt,jwt,j · xt,j

˜

+
[1 ≤ j ≤ k]

• suffer loss ℓt = ‖(ℓt,1, . . . , ℓt,n)‖

• update wt+1,j = wt,j + τt,jyt,jxt,j [1 ≤ j ≤ k]

Fig. 1. A general skeleton for an online multitask classification algorithm. A concrete
algorithm is obtained by specifying the values of τt,j .

Warmuth [9] generalized the notion of matching loss [10] to multi-dimensional
outputs; this enables analysis of algorithms that perform multi-dimensional re-
gression by composing linear functions with a variety of transfer functions. It
is not obvious how to directly use their work to address the problem of linear
classification with dependent losses addressed in this paper. An analysis of the
L∞ norm of prediction errors is implicit in some past work of Crammer and
Singer [11, 12]; the present paper extends this work to a broader framework, and
tightens the analysis. When k, the number of multiple tasks, is set to 1, two of
the algorithms presented in this paper reduce to the PA-I algorithm [1].

This paper is organized as follows. In Sec. 2 we present our problem more
formally and prove a key lemma which facilitates the analysis of our algorithms.
In Sec. 3 we present our first family of algorithms, which works in the finite
horizon online setting. In Sec. 4 we extend the first family of algorithms to
the infinite horizon setting. Finally, in Sec. 5, we present our third family of
algorithms for the multitask setting, and show that it shares the analyses of
both previous algorithms. The third family of algorithms requires solving a small
optimization problem on each online round. Finally, in Sec. 6, we discuss some
efficient techniques for solving this optimization problem.

2 Online Multitask Learning with Additive Updates

We begin by presenting the online multitask setting more formally. We are faced
with k online binary classification problems in parallel. The instances of each
problem are drawn from separate instance domains, and for concreteness, we
assume that the instances of problem j are all vectors in R

nj . As stated in
the previous section, online learning is performed in a sequence of rounds. On
round t, the algorithm observes k instances, (xt,1, . . . ,xt,k) ∈ R

n1 × . . . × R
nk .

The algorithm maintains k separate classifiers in its internal memory, one for



each of the multiple tasks, and updates them from round to round. Each of
these classifiers is a margin-based linear predictor, defined by a weight vector.
Let wt,j ∈ R

nj denote the weight vector used to define the j’th linear classi-
fier on round t. The algorithm uses its classifiers to predict the binary labels
ŷt,1, . . . , ŷt,k, where ŷt,j = sign(wt,j · xt,j). Then, the correct labels of the re-
spective problems, yt,1, . . . , yt,k, are revealed and each one of the predictions
is evaluated. We use the hinge-loss function to penalize incorrect predictions,
namely, the loss associated with the j’th problem is defined to be

ℓt,j =
[
1 − yt,jwt,j · xt,j

]

+
,

where [a]+ = max{0, a}. As previously stated, the global loss is then defined
to be ‖ℓt‖, where ‖ · ‖ is a predefined absolute norm. Finally, the algorithm
applies an update to each of the online hypotheses, and defines the vectors
wt+1,1, . . . ,wt+1,k. All of the algorithms presented in this paper use an additive
update rule, and define wt+1,j to be wt,j+τt,jyt,jxt,j , where τt,j is a non-negative
scalar. The algorithms only differ from one another in the way they set τt,j . The
general skeleton followed by all of our online algorithms is given in Fig. 1.

A concept of key importance in this paper is the notion of the dual norm

[13]. Any norm ‖ · ‖ defined on R
n has a dual norm, also defined on R

n, denoted
by ‖ · ‖⋆ and given by

‖u‖⋆ = max
v∈Rn

u · v
‖v‖ = max

v∈Rn : ‖v‖=1
u · v . (1)

The dual of a p-norm is itself a p-norm, and specifically, the dual of ‖ ·‖p is ‖ ·‖q,
where 1

q + 1
p = 1. The dual of ‖ · ‖∞ is ‖ · ‖1 and vice versa. It can also be shown

that the dual of ‖v‖r-max is

‖u‖⋆
r-max = max

{

‖u‖∞,
‖u‖1

r

}

. (2)

An important property of dual norms, which is an immediate consequence of
Eq. (1), is that for any u,v ∈ R

n it holds that

u · v ≤ ‖u‖⋆ ‖v‖ . (3)

If ‖ · ‖ is a p-norm then the above is known as Hölder’s inequality, and specifi-
cally if p = 2 then it is called the Cauchy-Schwartz inequality. Two additional
properties which we rely on are that the dual of the dual norm is the original
norm (see for instance [13]), and that the dual of an absolute norm is also an
absolute norm. As previously mentioned, to obtain concrete online algorithms,
all that remains is to define the update weights τt,j . The different ways of setting
τt,j discussed in this paper all share the following properties:

– boundedness: ∀ 1 ≤ t ≤ T ‖τt‖⋆ ≤ C for some predefined parameter C
– non-negativity: ∀ 1 ≤ t ≤ T, 1 ≤ j ≤ k τt,j ≥ 0
– conservativeness: ∀ 1 ≤ t ≤ T, 1 ≤ j ≤ k (ℓt,j = 0) ⇒ (τt,j = 0)



Even before specifying the exact value of τt,j , we can state and prove a powerful
lemma which is the crux of our analysis. This lemma will motivate and justify
our specific choices of τt,j throughout this paper.

Lemma 1. Let {(xt,j , yt,j)}1≤j≤k
1≤t≤T be a sequence of T k-tuples of examples, where

each xt,j ∈ R
nj , ‖xt,j‖2 ≤ R and each yt,j ∈ {−1,+1}. Let w⋆

1, . . . ,w
⋆
k be ar-

bitrary vectors where w⋆
j ∈ R

nj , and define the hinge loss attained by w⋆
j on

example (xt,j , yt,j) to be ℓ⋆
t,j =

[
1 − yt,jw

⋆
j · xt,j

]

+
. Let ‖ · ‖ be a norm and let

‖ · ‖⋆ denote its dual. Assume we apply an algorithm of the form outlined in

Fig. 1 to this sequence, where the update satisfies the boundedness property with

C > 0, as well as the non-negativity and conservativeness properties. Then

T∑

t=1

k∑

j=1

(

2τt,jℓt,j − τ2
t,j‖xt,j‖2

2

)

≤
k∑

j=1

‖w⋆
j‖2

2 + 2C

T∑

t=1

‖ℓ⋆
t‖ .

Proof. Define ∆t,j = ‖wt,j − w⋆
j‖2

2 − ‖wt+1,j − w⋆
j‖2

2. We prove the lemma by

bounding
∑T

t=1

∑k
j=1 ∆t,j from above and from below. Beginning with the upper

bound, we note that for each 1 ≤ j ≤ k,
∑T

t=1 ∆t,j is a telescopic sum which
collapses to

T∑

t=1

∆t,j = ‖w1,j − w⋆‖2
2 − ‖wT+1,j − w⋆‖2

2 .

Using the facts that w1,j = (0, . . . , 0) and ‖wT+1,j −w⋆‖2
2 ≥ 0 for all 1 ≤ j ≤ k,

we conclude that
T∑

t=1

k∑

j=1

∆t,j ≤
k∑

j=1

‖w⋆
j‖2

2 . (4)

Turning to the lower bound, we note that we can consider only non-zero sum-
mands which actually contribute to the sum, namely ∆t,j 6= 0. Plugging the
definition of wt+1,j into ∆t,j , we get

∆t,j = ‖wt,j − w⋆
j‖2

2 − ‖wt,j + τt,jyt,jxt,j − w⋆
j‖2

2

= τt,j

(
−2yt,jwt,j · xt,j − τt,j‖xt,j‖2

2 + 2yt,jw
⋆
j · xt,j

)

= τt,j

(
2(1 − yt,jwt,j · xt,j) − τt,j‖xt,j‖2

2 − 2(1 − yt,jw
⋆
j · xt,j)

)
. (5)

Since our update is conservative, ∆t,j 6= 0 implies that ℓt,j = 1 − yt,jwt,j · xt,j .
By definition, it also holds that ℓ⋆

t,j ≥ 1 − yt,jw
⋆
j · xt,j . Using these two facts in

Eq. (5) and using the fact that τt,j ≥ 0 gives ∆t,j ≥ τt,j(2ℓt,j−τt,j‖xt,j‖2
2−2ℓ⋆

t,j).
Summing this inequality over 1 ≤ j ≤ k gives

k∑

j=1

∆t,j ≥
k∑

j=1

(
2τt,jℓt,j − τ2

t,j‖xt,j‖2
2

)
− 2

k∑

j=1

τt,jℓ
⋆
t,j . (6)



Using Eq. (3) we know that
∑k

j=1 τt,jℓ
⋆
t,j ≤ ‖τt‖⋆‖ℓ⋆

t‖. Using our assumption

that ‖τt‖⋆ ≤ C, we have that
∑k

j=1 τt,jℓ
⋆
t,j ≤ C‖ℓ⋆

t‖. Plugging this inequality
into Eq. (6) gives

k∑

j=1

∆t,j ≥
k∑

j=1

(
2τt,jℓt,j − τ2

t,j‖xt,j‖2
2

)
− 2C‖ℓ⋆

t‖ .

We conclude the proof by summing the above over 1 ≤ t ≤ T and comparing
the result to the upper bound in Eq. (4). ⊓⊔

Under the assumptions of this lemma, our algorithm competes with a set of
fixed margin classifiers, w⋆

1, . . . ,w
⋆
k, which may even be defined in hindsight,

after observing all of the inputs and their labels. The right-hand side of the
bound is the sum of two terms, a complexity term

∑k
j=1 ‖w⋆

j‖2
2 and a term

which is proportional to the cumulative loss of our competitor,
∑T

t=1 ‖ℓ⋆
t‖. The

left hand side of the bound is the term

T∑

t=1

k∑

j=1

(

2τt,jℓt,j − τ2
t,j‖xt,j‖2

2

)

. (7)

This term plays a key role in the derivation of all three families of algorithms. As
Lemma 1 provides an upper bound on Eq. (7), we prove matching lower bounds
for each of our algorithms. Comparing each of these lower bounds to Lemma 1
yields a loss bound for the respective algorithm.

3 The Finite-Horizon Multitask Perceptron

Our first family of online multitask classification algorithms is called the finite-

horizon multitask Perceptron family. This family includes algorithms for any
global loss function defined by an absolute norm. These algorithms are finite-
horizon online algorithms, meaning that the number of online rounds, T , is
known in advance and is given as a parameter to the algorithm. An analogous
family of infinite-horizon algorithms is the topic of the next section. Given an
absolute norm ‖ · ‖ and its dual ‖ · ‖⋆, the multitask Perceptron sets τt,j to be

τt = argmax
τ : ‖τ‖⋆≤C

τ · ℓt , (8)

where C > 0 is specified later on. Using Eq. (1), we obtain the dual of ‖ · ‖⋆:

‖ℓ‖⋆⋆ = max
τ : ‖τ‖⋆≤1

τ · ℓ .

Since ‖·‖⋆⋆ and ‖·‖ are equivalent [13] and since ‖τ/C‖⋆ = ‖τ‖⋆/C, we conclude
that τt from Eq. (8) satisfies

τt · ℓt = C‖ℓt‖ . (9)



If the global loss is a p-norm, then Eq. (8) reduces to τt,j = Cℓ p−1
t,j /‖ℓt‖p−1

p . If
the global loss is an r-max norm and π is a permutation such that ℓt,π(1) ≥ . . . ≥
ℓt,π(k), then Eq. (8) reduces to

τt,j =

{
C if j ∈ {π(1), . . . , π(r)}
0 otherwise

.

The correctness of both definitions of τt,j given above can be easily verified by
observing that ‖τt‖⋆ = C and that τt · ℓt = C‖ℓt‖ in both cases.

An important component in our analysis is the remoteness of a norm ‖ · ‖,
defined to be

ρ(‖ · ‖, k) = max
u∈Rk

‖u‖2

‖u‖ .

Geometrically, the remoteness of ‖ · ‖ is simply the Euclidean length of the
longest vector (again, in the Euclidean sense) which is contained in the unit ball
of ‖ · ‖. For example, for any p-norm with p ≥ 2, ρ(‖ · ‖p, k) = k1/2−1/p. In this
paper, we take a specific interest in the remoteness of the dual norm ‖ · ‖⋆, and
we abbreviate ρ(‖ · ‖⋆, k) by ρ when ‖ · ‖⋆ and k are obvious from the context.
With this definition handy, we are ready to prove a loss bound for the multitask
Perceptron.

Theorem 1. Let {(xt,j , yt,j)}1≤j≤k
1≤t≤T be a sequence of T k-tuples of examples,

where each xt,j ∈ R
nj , ‖xt,j‖2 ≤ R and each yt,j ∈ {−1,+1}. Let ‖ · ‖ be an

absolute norm and let ρ denote the remoteness of its dual. Let w⋆
1, . . . ,w

⋆
k be

arbitrary vectors where w⋆
j ∈ R

nj , and define the hinge loss attained by w⋆
j on

example (xt,j , yt,j) to be ℓ⋆
t,j =

[
1 − yt,jw

⋆
j · xt,j

]

+
. If we present this sequence

to the finite-horizon multitask Perceptron with the norm ‖ · ‖ and the parameter

C, then

T∑

t=1

‖ℓt‖ ≤ 1

2C

k∑

j=1

‖w⋆
j‖2

2 +

T∑

t=1

‖ℓ⋆
t‖ +

TR2C ρ2(‖ · ‖⋆, k)

2
.

Proof. The starting point of our analysis is Lemma 1. The choice of τt,j in Eq. (8)
is clearly bounded by ‖τt‖⋆ ≤ C and conservative. It is also non-negative, due to
the fact that ‖·‖⋆ is an absolute norm and that ℓt,j ≥ 0. Therefore, the definition
of τt,j in Eq. (8) meets the requirements of the lemma, and we have

T∑

t=1

k∑

j=1

(

2τt,jℓt,j − τ2
t,j‖xt,j‖2

2

)

≤
k∑

j=1

‖w⋆
j‖2

2 + 2C

T∑

t=1

‖ℓ⋆
t‖ .

Using Eq. (9), we rewrite the left-hand side of the above as

2C

T∑

t=1

‖ℓt‖ −
T∑

t=1

k∑

j=1

τ2
t,j‖xt,j‖2

2 . (10)



Using our assumption that ‖xt,j‖2
2 ≤ R2, we know that

∑k
j=1 τ2

t,j‖xt,j‖2
2 ≤

R2‖τt‖2
2. Using the definition of remoteness, we can upper bound this term by

R2(‖τt‖⋆)2ρ2. Finally, using our upper bound on ‖τt‖⋆ we can further bound
this term by R2C2ρ2. Plugging this bound back into Eq. (10) gives

2C

T∑

t=1

‖ℓt‖ − TR2C2ρ2 .

Overall, we have shown that

2C
T∑

t=1

‖ℓt‖ − TR2C2ρ2 ≤
k∑

j=1

‖w⋆
j‖2

2 + 2C
T∑

t=1

‖ℓ⋆
t‖ .

Dividing both sides of the above by 2C and rearranging terms gives the desired
bound. ⊓⊔
Corollary 1. Under the assumptions of Thm. 1, if C = 1/(

√
TRρ), then

T∑

t=1

‖ℓt‖ ≤
T∑

t=1

‖ℓ⋆
t‖ +

√
TR ρ

2





k∑

j=1

‖w⋆
j‖2

2 + 1



 .

Since our algorithm uses C in its update procedure, and C is a function of
√

T ,
then this algorithm is a finite horizon algorithm.

4 An Extension to the Infinite Horizon Setting

We would like to devise an algorithm which does not require prior knowledge
of the sequence length T . Moreover, we would like a bound which holds simul-
taneously for every prefix of the input sequence. In this section, we adapt the
multitask Perceptron to the infinite horizon setting. This generalization comes
at a price; our analysis only bounds a function similar to the cumulative global
loss, but not the global loss per se (see Corollary 2 below).

To motivate the infinite-horizon multitask Perceptron, we take a closer look
at the analysis of the finite-horizon Perceptron, from the previous section. In
the proof of Thm. 1, we lower-bounded the term

∑k
j=1 2τt,jℓt,j − τ2

t,j‖xt,j‖2
2 by

2C‖ℓt‖ − R2C2ρ2. The first term in this lower bound is proportional to the
global loss, and the second term is a constant. When ‖ℓt‖ is small, the difference
between these two terms may be negative, which implies that our update step-
size may have been too large on that round, and that our update may have
even increased our distance to the target. Here, we derive an update for which
∑k

j=1 2τt,jℓt,j − τ2
t,j‖xt,j‖2

2 is always positive. The vector τt remains in the same
direction as before, but by limiting its dual norm we enforce an update step-size
which is never excessively large. We replace the definition of τt in Eq. (8) by

τt = argmax
τ : ‖τ‖⋆≤min

n

C,
‖ℓt‖

R2ρ2

o

τ · ℓt , (11)



where C > 0 is a user defined parameter, R > 0 is an upper bound on ‖xt,j‖2

for all 1 ≤ t ≤ T and 1 ≤ j ≤ k, and ρ = ρ(‖ · ‖⋆, k). If the global loss function
is a p-norm, then the above reduces to

τt,j =







ℓ p−1

t,j

R2ρ2‖ℓt‖
p−2

p

if ‖ℓt‖p ≤ R2Cρ2

Cℓ p−1

t,j

‖ℓt‖
p−1

p

otherwise
.

If the global loss function is an r-max norm and π is a permutation such that
ℓt,π(1) ≥ . . . ≥ ℓt,π(k), then Eq. (11) becomes

τt,j =







‖ℓt‖r-max

rR2 if ‖ℓt‖r-max ≤ R2Cρ2 and j ∈ {π(1), . . . , π(r)}
C if ‖ℓt‖r-max > R2Cρ2 and j ∈ {π(1), . . . , π(r)}
0 otherwise

.

We now turn to proving a cumulative loss bound.

Theorem 2. Let {(xt,j , yt,j)}1≤j≤k
t=1,2,... be a sequence of k-tuples of examples, where

each xt,j ∈ R
nj , ‖xt,j‖2 ≤ R and each yt,j ∈ {−1,+1}. Let ‖ · ‖ be an absolute

norm and let ρ denote the remoteness of its dual. Let w⋆
1, . . . ,w

⋆
k be arbitrary

vectors where w⋆
j ∈ R

nj , and define the hinge loss attained by w⋆
j on example

(xt,j , yt,j) to be ℓ⋆
t,j =

[
1 − yt,jw

⋆
j · xt,j

]

+
. If we present this sequence to the

infinite-horizon multitask Perceptron with the norm ‖ · ‖ and the parameter C,

then, for every T ,

1/(R2ρ2)
∑

t≤T :‖ℓt‖≤R2Cρ2

‖ℓt‖2 + C
∑

t≤T :‖ℓt‖>R2Cρ2

‖ℓt‖ ≤ 2C
T∑

t=1

‖ℓ⋆
t‖ +

k∑

j=1

‖w⋆
j‖2

2 .

Proof. The starting point of our analysis is again Lemma 1. The choice of τt,j

in Eq. (11) is clearly bounded by ‖τt‖⋆ ≤ C and conservative. It is also non-
negative, due to the fact that ‖ · ‖⋆ is absolute and that ℓt,j ≥ 0. Therefore, τt,j

meets the requirements of Lemma 1, and we have

T∑

t=1

k∑

j=1

(

2τt,jℓt,j − τ2
t,j‖xt,j‖2

2

)

≤
k∑

j=1

‖w⋆
j‖2

2 + 2C

T∑

t=1

‖ℓ⋆
t‖ . (12)

We now prove our theorem by lower-bounding the left hand side of the above.
We analyze two different cases: if ‖ℓt‖ ≤ R2Cρ2 then min{C, ‖ℓt‖/(R2ρ2)} =
‖ℓt‖/(R2ρ2). Again using the fact that the dual of the dual norm is the original
norm, together with the definition of τt in Eq. (11), we get that

2

k∑

j=1

τt,jℓt,j = 2‖τt‖⋆ ‖ℓt‖ = 2
‖ℓt‖2

R2ρ2
. (13)



On the other hand,
∑k

j=1 τ2
t,j‖xt,j‖2

2 can be bounded by R2‖τt‖2
2. Using the def-

inition of remoteness, we bound this term by R2(‖τt‖⋆)2ρ2. Using the fact that,
‖τt‖⋆ ≤ ‖ℓt‖/(R2ρ2), we bound this term by ‖ℓt‖2/(R2ρ2). Overall, we have

shown that
∑k

j=1 τ2
t,j‖xt,j‖2

2 ≤ ‖ℓt‖
2

R2ρ2 . Subtracting both sides of this inequality

from the respective sides of Eq. (13) gives

‖ℓt‖2

R2ρ2
≤

k∑

j=1

(
2τt,jℓt,j − τ2

t,j‖xt,j‖2
2

)
. (14)

Moving on to the second case, if ‖ℓt‖ > R2Cρ2 then min{C, ‖ℓt‖/(R2ρ2)} = C.
As in Eq. (9), we have that

2

k∑

j=1

τt,jℓt,j = 2‖τt‖⋆ ‖ℓt‖ = 2C‖ℓt‖ . (15)

As before, we can upper bound
∑k

j=1 τ2
t,j‖xt,j‖2

2 by R2(‖τt‖⋆)2ρ2. Using the fact

that ‖τt‖⋆ ≤ C, we bound this term by R2C2ρ2. Finally, using our assumption

that ‖ℓt‖ > R2Cρ2, we conclude that
∑k

j=1 τ2
t,j‖xt,j‖2

2 < C‖ℓt‖. Subtracting
both sides of this inequality from the respective sides of Eq. (15) gives

C‖ℓt‖ ≤
k∑

j=1

(
2τt,jℓt,j − τ2

t,j‖xt,j‖2
2

)
. (16)

Comparing the upper bound in Eq. (12) with the lower bounds in Eq. (14) and
Eq. (16) proves the theorem. ⊓⊔

Corollary 2. Under the assumptions of Thm. 2, if C is set to be 1/(R2ρ2) then,

for every T , it holds that

T∑

t=1

min
{
‖ℓt‖2, ‖ℓt‖

}
≤ 2

T∑

t=1

‖ℓ⋆
t‖ + R2ρ2

k∑

j=1

‖w⋆
j‖2

2 .

5 The Implicit Online Multitask Update

We now discuss a third family of online multitask algorithms, which leads to
the strongest loss bounds of the three families of algorithms presented in this
paper. In contrast to the closed form updates of the previous algorithms, the
algorithms in this family require solving an optimization problem on every round,
and are therefore called implicit update algorithms. This optimization problem
captures the fundamental tradeoff inherent to online learning. On one hand, the
algorithm wants its next set of hypotheses to remain close to the current set
of hypotheses, so as to maintain the information learned so far. On the other



input: aggressiveness parameter C > 0, norm ‖ · ‖

initialize w1,1 = . . . = w1,k = (0, . . . , 0)

for t = 1, 2, . . .

• receive xt,1, . . . ,xt,k

• predict sign(wt,j · xt,j) [1 ≤ j ≤ k]

• receive yt,1, . . . , yt,k

• suffer loss ℓt,j =
ˆ

1 − yt,jwt,j · xt,j

˜

+
[1 ≤ j ≤ k]

• update:

{wt+1,1, . . . ,wt+1,k} = argmin
w1,...,wk,ξ

1

2

Pk

j=1
‖wj − wt,j‖

2
2 + C‖ξ‖

s.t. ∀j wj ·xt,j ≥ 1 − ξj and ξj ≥ 0

Fig. 2. The implicit update algorithm

hand, the algorithm wants to make progress using the new examples obtained
on this round, where progress is measured using the global loss function. The
pseudo-code of the implicit update algorithm is presented in Fig. 2.

Next, we find the dual of the optimization problem given in Fig. 2. By doing
so, we show that the family of implicit update algorithms follows the skeleton
outlined in Fig. 1 and satisfies the requirements of Lemma 1.

Lemma 2. Let ‖·‖ be a norm and let ‖·‖⋆ be its dual. Then the online update de-

fined in Fig. 2 is conservative and equivalent to setting wt+1,j = wt,j+τt,jyt,jxt,j

for all 1 ≤ j ≤ k, where

τt = argmax
τ

k∑

j=1

(
2τjℓt,j − τ2

j ‖xt,j‖2
2

)
s.t. ‖τ‖⋆ ≤ C and ∀j τj ≥ 0 .

Proof Sketch. The update step in Fig. 2 sets the vectors wt+1,1, . . . ,wt+1,k to
be the solution to the following constrained minimization problem:

min
w1,...,wk,ξ≥0

1

2

k∑

j=1

‖wj − wt,j‖2
2 + C‖ξ‖ s.t. ∀j yt,jwj ·xt,j ≥ 1 − ξj .

We use the notion of strong duality to restate this optimization problem in an
equivalent form. The objective function above is convex and the constraints are
both linear and feasible, therefore Slater’s condition [14] holds, and the above
problem is equivalent to

max
τ≥0

min
w1,...,wk,ξ≥0

1

2

k∑

j=1

‖wj − wt,j‖2
2 + C‖ξ‖ +

k∑

j=1

τj (1 − yt,jwj ·xt,j − ξj) .



We can write the objective function above as the sum of two separate terms,

1

2

k∑

j=1

‖wj − wt,j‖2
2 +

k∑

j=1

τj(1 − yt,jwj ·xt,j)

︸ ︷︷ ︸

L1(τ,w1,...,wk)

+ C‖ξ‖ −
k∑

j=1

τjξj

︸ ︷︷ ︸

L2(τ,ξ)

.

Using the notation defined above, our optimization problem becomes,

max
τ≥0

(

min
w1,...,wk

L1(τ,w1, . . . ,wk) + min
ξ≥0

L2(τ, ξ)

)

.

For any choice of τ, L1 is a convex function and we can find w1, . . . ,wk which
minimize it by setting all of its partial derivatives with respect to the elements
of w1, . . . ,wk to zero. By doing so, we conclude that, wj = wt,j + τjyt,jxt,j for
all 1 ≤ j ≤ k.

The update is conservative since if ℓt,j = 0 then setting wj = wt,j satisfies
the constraints and minimizes ‖wt − wt,j‖2

2, without restricting our choice of
any other variable. Plugging our expression for wj into L1, we have that

min
w1,...,wk

L1(τ,w1, . . . ,wk) =
k∑

j=1

τj(1 − yt,jwt,j · xt,j) − 1

2

k∑

j=1

τ2
j ‖xt,j‖ .

Since the update is conservative, it holds that τj(1 − yt,jwt,j · xt,j) = τtℓt,j .
Overall, we have reduced our optimization problem to

τt = argmax
τ≥0





k∑

j=1

(

τjℓt,j −
1

2
τ2
j ‖xt,j‖

)

+ min
ξ≥0

L2(τ, ξ)



 . (17)

We turn our attention to L2 and abbreviate B(τ) = minξ≥0 L2(τ, ξ). It can
now be shown that B is a barrier function for the constraint ‖τ‖⋆ ≤ C, namely
B(τ) = 0 if ‖τ‖⋆ ≤ C and B(τ) = −∞ if ‖τ‖⋆ > C. Therefore, we replace B(τ)
in Eq. (17) with the explicit constraint ‖τ‖⋆ ≤ C, and conclude the proof. ⊓⊔

Turning to the analysis, we now show that all of the loss bounds proven in
this paper also apply to the implicit update family of algorithms. We formally
prove that the bound in Thm. 1 (and specifically in Corollary 1) holds for this
family. The proof that the bound in Thm. 2 (and specifically in Corollary 2) also
holds for this family is identical and is therefore omitted.

Theorem 3. The bound in Thm. 1 also holds for the algorithm in Fig. 2.

Proof. Let τ ′
t,j denote the weights defined by the multitask Perceptron in Eq. (8)

and let τt,j denote the weights assigned by the implicit update in Fig. 2. In the
proof of Thm. 1, we showed that,

2C‖ℓt‖ − R2C2ρ2 ≤
k∑

j=1

(
2τ ′

t,jℓt,j − τ ′
t,j
2‖xt,j‖2

2

)
. (18)



According to Lemma 2, the weights τt,j maximize
∑k

j=1(2τt,jℓt,j − τ2
t,j‖xt,j‖2

2),
subject to the constraints ‖τt‖⋆ ≤ C and τt,j ≥ 0. Since the weights τ ′

t,j also

satisfy these constraints, it holds that
∑k

j=1(2τ
′
t,jℓt,j − τ ′2

t,j‖xt,j‖2
2) is necessar-

ily upper-bounded by
∑k

j=1(2τt,jℓt,j − τ2
t,j‖xt,j‖2

2). Combining this fact with
Eq. (18), we conclude that

2C‖ℓt‖ − R2C2ρ2 ≤
k∑

j=1

(
2τt,jℓt,j − τ2

t,j‖xt,j‖2
2

)
. (19)

Since τt,j is bounded, non-negative, and conservative (due to Lemma 2), the
right-hand side of the above inequality is upper-bounded by Lemma 1. Compar-
ing the bound in Eq. (19) to the bound in Lemma 1 proves the theorem. ⊓⊔

6 Algorithms for the Implicit Online Multitask Update

In this section, we briefly describe efficient algorithms for calculating the update
in Fig. 2. Due to space constraints we omit all proofs. If the global loss function
is the L2 norm, it can be shown that the solution to the optimization problem
in Fig. 2 takes the form τt,j = ℓt,j/(‖xt,j‖2

2 + θt), where θt is the solution to

the equation
∑k

j=1(
ℓt,j

‖xt,j‖2

2
+θt

)2 = C2. The exact value of θt can be found using

binary search.
Similarly, in the case where the global loss function is the r-max norm, it can

be shown that there exists some θt ≥ 0 such that

τt,j =







0 if ℓt,j − θt < 0
ℓt,j−θt

‖xt,j‖2

2

if 0 ≤ ℓt,j − θt ≤ C‖xt,j‖2
2

C if C‖xt,j‖2
2 < ℓt,j − θt

. (20)

That is, if the loss of task j is very small then the j’th predictor is left intact.
If this loss is moderate then the size of the update step for the j’th predictor
is proportional to the loss suffered by the j’th task, and inversely proportional
to the squared norm of xt,j . In any case, the size of the update step does not
exceed the fixed upper limit C. By plugging Eq. (20) back into the objective
function of our optimization problem, we can see that the objective function is
monotonically decreasing in θt. We conclude that θt should be the smallest non-
negative value for which the resulting update vector τt satisfies the constraint
‖τt‖⋆

r-max ≤ C.
First, we check whether the constraint ‖τt‖⋆

r-max ≤ C holds when θt = 0. If
the answer is positive, we are done. If the answer is negative, the definition of
‖·‖⋆

r-max in Eq. (2) and the KKT conditions of optimality yield that ‖τt‖1 = rC.
This equality enables us to narrow the search for θt to a handful of candidate
values. To see this, assume for a moment that we have some way of obtaining the
sets Ψ = {1 ≤ j ≤ k : 0 < ℓt,j − θt} and Φ = {1 ≤ j ≤ k : C‖xt,j‖2

2 < ℓt,j − θt}.
The semantics of Ψ and Φ are readily available from Eq. (20): the set Ψ consists



of all indices j for which τt,j > 0, while Φ consists of all indices j for which τt,j

is capped at C. Given these two sets and the fact that
∑k

j=1 τj = rC yields that

∑

j∈Ψ\Φ
ℓt,j−θt

‖xt,j‖2

2

+
∑

j∈Φ C = rC .

Solving the above equation for θt gives

θt =

∑

j∈Ψ\Φ
ℓt,j

‖xt,j‖2

2

− rC +
∑

j∈Φ C
∑

j∈Ψ\Φ
1

‖xt,j‖2

2

. (21)

Therefore, our problem has reduced to the problem of finding the sets Ψ and Φ.
Let q1, . . . , q2k denote the sequence of numbers obtained by sorting the union

of the sets {ℓt,j}k
j=1 and {(ℓt,j − C‖xt,j‖2

2)}k
j=1 in ascending order. For every

1 ≤ s ≤ 2k, we define the sets Ψs = {1 ≤ j ≤ k : 0 < ℓt,j − qs} and Φs =
{1 ≤ j ≤ k : C‖xt,j‖2

2 < ℓt,j − qs}. It is not difficult to see that if θt ∈ [qs, qs+1)
then Ψ = Ψs and Φ = Φs. Essentially, we have narrowed the search for θt to
2k candidates defined by the sets Ψs and Φs for 1 ≤ s ≤ 2k, and by Eq. (21).
Of these candidates we choose the smallest one which results in an update that
satisfies our constraints. When performing this process with careful bookkeeping,
calculating the update takes only O(k log(k)) operations.

Acknowledgement This research was funded by the Israeli Science Founda-
tion under grant number 522/04 and by the National Science Foundation ITR
program under grant number 0205594.

References

1. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive
aggressive algorithms. Journal of Machine Learning Research 7 (2006)

2. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. JAIR 2 (1995) 263–286

3. Caruana, R.: Multitask learning. Machine Learning 28 (1997) 41–75

4. Heskes, T.: Solving a huge number of silmilar tasks: A combination of multitask
learning and a hierarchical bayesian approach. In: ICML 15. (1998) 233–241

5. Evgeniou, T., C.Micchelli, Pontil, M.: Learning multiple tasks with kernel methods.
Journal of Machine Learning Research 6 (2005) 615–637

6. Baxter, J.: A model of inductive bias learning. Journal of Artificial Intelligence
Research 12 (2000) 149–198

7. Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning.
In: COLT 16. (2003)

8. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In: Proceedings of the
Twenty-First International Conference on Machine Learning. (2004)

9. Kivinen, J., Warmuth, M.: Relative loss bounds for multidimensional regression
problems. Journal of Machine Learning 45 (2001) 301–329



10. Helmbold, D., Kivinen, J., Warmuth, M.: Relative loss bounds for single neurons.
IEEE Transactions on Neural Networks 10 (1999) 1291–1304

11. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Jornal of Machine Learning Research 2 (2001) 265–292

12. Crammer, K., Singer, Y.: Ultraconservative online algorithms for multiclass prob-
lems. Jornal of Machine Learning Research 3 (2003) 951–991

13. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press (1985)
14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)


