
An Online Algorithm for Hierarchical Phoneme

Classification

Ofer Dekel, Joseph Keshet, and Yoram Singer

{oferd,jkeshet,singer}@cs.huji.ac.il
School of Computer Science and Engineering,

The Hebrew University, Jerusalem, 91904, Israel

Abstract. We present an algorithmic framework for phoneme classifi-
cation where the set of phonemes is organized in a predefined hierarchi-
cal structure. This structure is encoded via a rooted tree which induces
a metric over the set of phonemes. Our approach combines techniques
from large margin kernel methods and Bayesian analysis. Extending the
notion of large margin to hierarchical classification, we associate a proto-
type with each individual phoneme and with each phonetic group which
corresponds to a node in the tree. We then formulate the learning task
as an optimization problem with margin constraints over the phoneme
set. In the spirit of Bayesian methods, we impose similarity requirements
between the prototypes corresponding to adjacent phonemes in the pho-
netic hierarchy. We describe a new online algorithm for solving the hi-
erarchical classification problem and provide worst-case loss analysis for
the algorithm. We demonstrate the merits of our approach by applying
the algorithm to synthetic data and as well as speech data.

1 Introduction

Phonemes classification is the task of deciding what is the phonetic identity of a
(typically short) speech utterance. Work in speech recognition and in particular
phoneme classification typically imposes the assumption that different classifi-
cation errors are of the same importance. However, since the set of phoneme are
embedded in a hierarchical structure some errors are likely to be more tolera-
ble than others. For example, it seems less severe to classify an utterance as the
phoneme /oy/ (as in boy) instead of /ow/ (as in boat), than predicting /w/ (as in
way) instead of /ow/. Furthermore, often we cannot extended a high-confidence
prediction for a given utterance, while still being able to accurately identify the
phonetic group of the utterance. In this paper we propose and analyze a hier-
archal model for classification that imposes a notion of “severity” of prediction
errors which is in accordance with a pre-defined hierarchical structure.

Phonetic theory of spoken speech embeds the set of phonemes of western
languages in a phonetic hierarchy where the phonemes constitute the leaves of
the tree while broad phonetic groups, such as vowels and consonants, correspond
to internal vertices. Such phonetic trees were described in [1, 2]. Motivated by
this phonetic structure we propose a hierarchical model (depicted in Fig. 1)

that incorporates the notion of the similarity (and analogously dissimilarity)
between the phonemes and between phonetic groups and employs this notion in
the learning procedure we describe and analyze below.

i y

R o o tO b s t r u e n t S i l e n c e s S o n o r a n t sP l o s i v e sV o i c e d U n v o i c e db d g p k t
F r i c a t i v e sV o i c e d U n v o i c e ds z f v s h z f v V o w e l s L i q u i d sN a s a l sn m n g r w l yF r o n t C e n t e r B a c k

A f f r i c a t e sj h c hh h , h v
i h , i x a a a o e r , a x r o ye h e y a e a w a y a h , a x ,a x ' h o w u h u w , u x

Fig. 1. The phonetic tree of American English.

Most of the previous work on phoneme classification sidestepped the hierar-
chical phonetic structure (see for instance, [3, 4]). Salomon [5] used a hierarchical
clustering algorithm for phoneme classification. His algorithm generates a binary
tree which is then used for constructing a phonetic classifier that employs mul-
tiple binary support vector machines (SVM). However, this construction was
designed for efficiency reasons rather than for capturing the hierarchical pho-
netic structure. The problem of hierarchical classification in machine learning,
in particular hierarchical document classification, was addressed by numerous
researchers (see for instance [6–9]). Most previous work on hierarchical clas-
sification decoupled the problem into independent classification problems by
assigning and training a classifier at each internal vertex in the hierarchy. To
incorporate the semantics relayed by the hierarchical structure, few researchers
imposed statistical similarity constraints between the probabilistic models for
adjacent vertices in the hierarchy (e.g. [7]). In probabilistic settings, statistical
similarities can be enforced using techniques such as back-off estimates [10] and
shrinkage [7].

A significant amount of recent work on classification problems, both binary
and multiclass, has been devoted to the theory and application of large margin
classifiers. See for instance the book of Vapnik [11] and the references therein.
In this paper, we describe, analyze, and apply a large margin approach to hier-

archical classification which is in the spirit of statistical approaches. As in large
margin methods, we associate a vector in a high dimensional space with each
phoneme or phoneme group in the hierarchy. We call this vector the prototype
of the phoneme or the phoneme group, and classify feature vectors according
to their similarity to the various prototypes. We relax the requirements of cor-
rect classification to large margin constraints and attempt to find prototypes
that comply with these constraints. In the spirit of Bayesian methods, we im-
pose similarity requirements between the prototypes corresponding to adjacent
phonemes in the hierarchy. The result is an algorithmic solution that may tol-
erate minor mistakes, such as predicting a sibling of the correct phoneme, but
avoids gross errors, such as predicting a vertex in a completely different part of
the tree.

Speech corpora typically contain a very large number of examples. To cope
with large amounts of data we devise an online algorithm that is both memory
efficient and simple to implement. Our algorithmic solution builds on the pio-
neering work of Warmuth and colleagues. In particular, we generalize and fuse
ideas from [12–14]. These papers discuss online learning of large-margin clas-
sifiers. On each round, the online hypothesis is updated such that it complies
with margin constraints imposed by the example observed on this round. Along
with the margin constraints, the update is required to keep the new classifier
fairly close to the previous one. We show that this idea can also be exploited in
our setting, resulting in a simple online update which can be used in conjunction
with kernel functions. Furthermore, using methods for converting online to batch
learning (e.g. [15]), we show that the online algorithm can be used to devise a
batch algorithm with good empirical performance.

The paper is organized as follows. In Sec. 2 we formally describe the hierarchi-
cal phoneme classification problem and establish our notation. Sec. 3 constitutes
the algorithmic core of the paper. In this section we describe an online algorithm
for hierarchical phoneme classification and prove a worst case bound on its per-
formance. In Sec. 4 we briefly describe a conversion of the online algorithm into
a well performing batch algorithm. In Sec. 5 we conclude the paper with a series
of experiments on synthetic data and on speech data.

2 Problem Setting

Let X ⊆ IRn be an acoustic features domain and let Y be a set of phonemes and
phoneme groups. In the hierarchical classification setting Y plays a double role:
first, as in traditional multiclass problems, it encompasses the set of phonemes,
namely each feature vector in X is associated with a phoneme v ∈ Y. Second, Y
defines a set of vertices, i.e., the phonemes and the phoneme groups, arranged
in a rooted tree T . We denote k = |Y|, for concreteness we assume that Y =
{0, . . . , k − 1} and let 0 be the root of T .

For any pair of phonemes u, v ∈ Y, let γ(u, v) denote their distance in the
tree. That is, γ(u, v) is defined to be the number of edges along the (unique)
path from u to v in T . The distance function γ(·, ·) is in fact a metric over Y

since it is a non-negative function, γ(v, v) = 0, γ(u, v) = γ(v, u) and the triangle
inequality always holds with equality. As stated above, different classification
errors incur different levels of penalty, and in our model this penalty is defined
by the tree distance γ(u, v). We therefore say that the tree induced error incurred
by predicting the phoneme or the phoneme group v when the correct phoneme
is u is γ(u, v).

We receive a training set S = {(xi, yi)}
m
i=1 of feature vector-phoneme pairs,

where each xi ∈ X and each yi ∈ Y. Our goal is to learn a classification function
f : X → Y which attains a small tree induced error. We focus on classifiers
that are of the following form: each phoneme v ∈ Y has a matching prototype
Wv ∈ IRn, where W0 is fixed to be the zero vector and every other prototype
can be any vector in IRn. The classifier f makes its predictions according to the
following rule,

f(x) = argmax
v∈Y

Wv · x . (1)

The task of learning f is reduced to learning W1, . . . ,Wk−1.
For every phoneme or phoneme group other than the tree root v ∈ {Y \ 0},

we denote by A(v) the parent of v in the tree. Put another way, A(v) is the
vertex adjacent to v which is closer to the tree root 0. We also define A(i)(v) to
be the ith ancestor of v (if such an ancestor exists). Formally, A(i)(v) is defined
recursively as follows,

A(0)(v) = v and A(i)(v) = A(A(i−1)(v)) .

For each phoneme or phoneme group v ∈ Y, define P(v) to be the set of phoneme
groups along the path from 0 (the tree root) to v,

P(v) =
{

u ∈ Y : ∃i u = A(i)(v)
}

.

For technical reasons discussed shortly, we prefer not to deal directly with
the set of prototypes W0, . . . ,Wk−1 but rather with the difference between
each prototype and the prototype of its parent. Formally, define w0 to be the
zero vector in IRn and for each phoneme or phoneme group v ∈ Y \ 0, let
wv = Wv − WA(v). Each prototype now decomposes to the sum

Wv =
∑

u∈P(v)

wu . (2)

The classifier f can be defined in two equivalent ways: by setting {Wv}v∈Y

and using Eq. (1), or by setting {wv}v∈Y and using Eq. (2) in conjunction
with Eq. (1). Throughout this paper, we often use {wv}v∈Y as a synonym for
the classification function f . As a design choice, our algorithms require that
adjacent vertices in the phonetic tree have similar prototypes. The benefit of
representing each prototype {Wv}v∈Y as a sum of vectors from {wv}v∈Y is
that adjacent prototypes Wv and WA(v) can be kept close by simply keeping
wv = Wv −WA(v) small. Sec. 3 and Sec. 4 address the task of learning the set
{wv}v∈Y from supervised data.

3 An Online Algorithm

In this section we derive and analyze an efficient online learning algorithm for
the hierarchical phoneme classification problem. In online settings, learning takes
place in rounds. On round i, a feature vector, denoted xi, is presented to the
learning algorithm. The algorithm maintains a set of prototypes which is con-
stantly updated in accordance with the quality of its predictions. We denote
the set of prototypes used to extend the prediction on round i by {wv

i }v∈Y .
Therefore, the predicted phoneme or phoneme group of the algorithm for xi is,

ŷi = argmax
v∈Y

Wv
i · xi = argmax

v∈Y

∑

u∈P(v)

wu
i · xi .

Then, the correct phoneme yi is revealed and the algorithm suffers an instanta-
neous error. The error that we employ in this paper is the tree induced error.
Using the notation above, the error on round i equals γ(yi, ŷi).

Our analysis, as well as the motivation for the online update that we derive
below, assumes that there exists a set of prototypes {ωv}v∈Y such that for every
feature vector-phoneme pair (xi, yi) and every r 6= yi it holds that,

∑

v∈P(yi)

ω
v · xi −

∑

u∈P(r)

ω
u · xi ≥

√

γ(yi, r) . (3)

The above difference between the projection onto the prototype correspond-
ing to the correct phoneme and any other prototype is a generalization of the
notion of margin employed by multiclass problems in machine learning litera-
ture [16]. Put informally, we require that the margin between the correct and
each of the incorrect phonemes and phoneme groups be at least the square-root
of the tree-based distance between them. The goal of the algorithm is to find a
set of prototypes which fulfills the margin requirement of Eq. (3) while incurring
a minimal tree-induced error until such a set is found. However, the tree-induced
error is a combinatorial quantity and is thus difficult to minimize directly. We
instead use a construction commonly used in large margin classifiers and employ
the the convex hinge-loss function

ℓ ({wv
i },xi, yi) =





∑

v∈P(ŷi)

wv
i · xi −

∑

v∈P(yi)

wv
i · xi +

√

γ(yi, ŷi)





+

, (4)

where [z]+ = max{z, 0}. In the sequel we show that ℓ2 ({wv
i },xi, yi) upper

bounds γ(yi, ŷi) and use this fact to attain a bound on
∑m

i=1 γ(yi, ŷi).
The online algorithm belongs to the family of conservative online algorithms,

which update their classification rules only on rounds on which prediction mis-
takes are made. Let us therefore assume that there was a prediction mistake
on round i. We would like to modify the set of vectors {wv

i } so as to satisfy
the margin constraints imposed by the ith example. One possible approach is
to simply find a set of vectors that solves the constraints in Eq. (3) (Such a set

must exist since we assume that there exists a set {ωv
i } which satisfies the mar-

gin requirements for all of the examples.) There are however two caveats in such
a greedy approach. The first is that by setting the new set of prototypes to be
an arbitrary solution to the constraints imposed by the most recent example we
are in danger of forgetting what has been learned thus far. The second, rather
technical, complicating factor is that there is no simple analytical solution to
Eq. (3). We therefore introduce a simple constrained optimization problem. The
objective function of this optimization problem ensures that the new set {wv

i+1}
is kept close to the current set while the constraints ensure that the margin re-
quirement for the pair (yi, ŷi) is fulfilled by the new vectors. Formally, the new
set of vectors is the solution to the following problem,

min
{wv}

1

2

∑

v∈Y

‖wv − wv
i ‖

2 (5)

s.t.
∑

v∈P(yi)

wv · xi −
∑

u∈P(ŷi)

wu · xi ≥
√

γ(yi, ŷi) .

y

ŷ

Fig. 2. An illustration
of the update: only the
vertices depicted us-
ing solid lines are up-
dated.

First, note that any vector wv corresponding to a ver-
tex v that does not belong to neither P(yi) nor P(ŷi)
does not change due to the objective function in Eq. (5),
hence, wv

i+1 = wv
i . Second, note that if v ∈ P(yi)∩P(ŷi)

then the contribution of the wv cancels out. Thus, for
this case as well we get that wv

i+1 = wv
i . In summary,

the vectors that we need to actually update correspond
to the vertices in the set P(yi)∆P(ŷi) where ∆ desig-
nates the symmetric difference of sets (see also Fig. 2).

To find the solution to Eq. (5) we introduce a La-
grange multiplier αi, and formulate the optimization
problem in the form of a Lagrangian. We set the deriva-
tive of the Lagrangian w.r.t. {wv} to zero and get,

wv
i+1 = wv

i + αixi v ∈ P(yi)\P(ŷi) (6)

wv
i+1 = wv

i − αixi v ∈ P(ŷi)\P(yi) . (7)

Since at the optimum the constraint of Eq. (5) is binding
we get that,

∑

v∈P(yi)

(wv
i + αixi) · xi =

∑

v∈P(ŷi)

(wv
i − αixi) · xi +

√

γ(yi, ŷi).

Rearranging terms in the above equation and using the definition of the loss
from Eq. (4) we get that,

αi ‖xi‖
2 |P(yi)∆P(ŷi)| = ℓ ({wv

i }, xi, yi) .

Finally, noting that the cardinality of P(yi)∆P(ŷi) is equal to γ(yi, ŷi) we get
that,

αi =
ℓ ({wv

i },xi, yi)

γ(yi, ŷi) ‖xi‖2
(8)

Initialize: ∀v ∈ Y : w1
v = 0

For t = 1, 2, . . . , m

– Receive acoustic feature vector xi

– Predict phoneme or phoneme group:

ŷi = arg max
v∈Y

X

u∈P(v)

w
u

i · xi

– Receive the correct phoneme yi

– Suffer loss: ℓ ({wv

i }, xi, yi) [see Eq. (4)]
– Update:

w
v

i+1 = w
v

i + αixi v ∈ P(yi)\P(ŷi)

w
v

i+1 = w
v

i − αixi v ∈ P(ŷi)\P(yi)

where
αi =

ℓ ({wv

i },xi, yi)

γ(yi, ŷi) ‖xi‖2

Fig. 3. Online hierarchical phoneme classification algorithm.

The pseudo code of the online algorithm is given in Fig. 3. The following theorem
implies that the cumulative loss suffered by the online algorithm is bounded as
long as there exists a hierarchical phoneme classifier which fulfills the margin
requirements on all of the examples.

Theorem 1. Let {(xi, yi)}
m
i=1 be a sequence of examples where xi ∈ X ⊆ IRn

and yi ∈ Y. Assume there exists a set {ωv : ∀v ∈ Y} that satisfies Eq. (3) for
all 1 ≤ i ≤ m. Then, the following bound holds,

m
∑

i=1

ℓ2 ({wv
i },xi, yi) ≤

∑

v∈Y

‖ωv‖2 γmax R2

where for all i, ‖xi‖ ≤ R and γ(yi, ŷi) ≤ γmax.

Proof. As a technical tool, we denote by ω̄ the concatenation of the vectors in
{ωv}, ω̄ =

(

ω
0, . . . , ωk−1

)

and similarly w̄i =
(

w0
i , . . . ,w

k−1
i

)

for i ≥ 1. We
denote by δi the difference between the squared distance w̄i from ω̄ and the
squared distance of w̄i+1 from ω̄,

δi = ‖w̄i − ω̄‖2 − ‖w̄i+1 − ω̄‖2 .

We now derive upper and lower bounds on
∑m

i=1 δi. First, note that by summing
over i we obtain,

m
∑

i=1

δi =

m
∑

i=1

‖w̄i − ω̄‖2 − ‖w̄i+1 − ω̄‖2

= ‖w̄1 − ω̄‖2 − ‖w̄m − ω̄‖2 ≤ ‖w̄1 − ω̄‖2 .

Our initialization sets w̄1 = 0 and thus we get,

m
∑

i=1

δi ≤ ‖ω̄‖2 =
∑

v∈Y

‖ωv‖2 . (9)

This provides the upper bound on
∑

i δi. We next derive a lower bound on each
δi. The minimizer of the problem defined by Eq. (5) is obtained by projecting
{wv

i } onto the linear constraint corresponding to our margin requirement. The
result is a new set {wv

i+1} which in the above notation can be written as the
vector w̄i+1. A well known result (see for instance [17], Thm. 2.4.1) states that
this vector satisfies the following inequality,

‖w̄i − ω̄‖2 − ‖w̄i+1 − ω̄‖2 ≥ ‖w̄i − w̄i+1‖
2 .

Hence, we get that δi ≥ ‖w̄i − w̄i+1‖
2. We can now take into account that wv

i

is updated if and only if v ∈ P(yi)∆P(ŷi) to get that,

‖w̄i − w̄i+1‖
2 =

∑

v∈Y

‖wv
i − wv

i+1‖
2

=
∑

v∈P(yi)∆P(ŷi)

‖wv
i − wv

i+1‖
2 .

Plugging Eqs. (6-7) into the above equation, we get

∑

v∈P(yi)∆P(ŷi)

‖wv
i − wv

i+1‖
2 =

∑

v∈P(yi)∆P(ŷi)

α2
i ‖xi‖

2

= |P(yi)∆P(ŷi)| α2
i ‖xi‖

2

= γ(yi, ŷi) α2
i ‖xi‖

2 .

We now use the definition of αi from Eq. (8) to obtain a lower bound on δi,

δi ≥
ℓ2 ({wv

i },xi, yi)

γ(yi, ŷi)‖xi‖2
.

Using the assumptions ‖xi‖ ≤ R and γ(yi, ŷi) ≤ γmax we can further bound δi

and write,

δi ≥
ℓ2 ({wv

i },xi, yi)

γmax R2
.

Now, summing over all i and comparing the lower bound given above with the
upper bound of Eq. (9) we get,

∑m

t=1 ℓ2 ({wv
i },xi, yi)

γmax R2
≤

m
∑

t=1

δi ≤
∑

v∈Y

‖ωv‖2 .

Multiplying both sides of the inequality above by γmax R2 gives the desired
bound. ⊓⊔

The loss bound of Thm. 1 can be straightforwardly translated into a bound
on the tree-induced error as follows. Note that whenever a prediction error occurs
(yi 6= ŷi), then

∑

v∈P(ŷi)
wv

i ·xi ≥
∑

v∈P(yi)
wv

i ·xi. Thus, the hinge-loss defined

by Eq. (4) is greater than
√

γ(yi, ŷi). Since we suffer a loss only on rounds were
prediction errors were made, we get the following corollary.

Corollary 1. Under the conditions of Thm. 1 the following bound on the cu-
mulative tree-induced error holds,

m
∑

t=1

γ(yi, ŷi) ≤
∑

v∈Y

‖ωv‖2 γmax R2 . (10)

To conclude the algorithmic part of the paper, we note that Mercer ker-
nels can be easily incorporated into our algorithm. First, rewrite the update as
wv

i+1 = wv
i + αv

i xi where,

αv
i =







αi v ∈ P(yi)\P(ŷi)
−αi v ∈ P(ŷi)\P(yi)

0 otherwise
.

Using this notation, the resulting hierarchical classifier can be rewritten as,

f(x) = argmax
v∈Y

∑

u∈P(v)

wu
i · xi (11)

= argmax
v∈Y

∑

u∈P(v)

m
∑

i=1

αu
i xi · x . (12)

We can replace the inner-products in Eq. (12) with a general kernel operator
K(·, ·) that satisfies Mercer’s conditions [11]. It remains to show that αv

i can be
computed based on kernel operations whenever αv

i 6= 0. To see this, note that
we can rewrite αi from Eq. (8) as

αi =

[

∑

v∈P(ŷi)

∑

j<i αv
j K(xj ,xi) −

∑

v∈P(yi)

∑

j<i αv
j K(xj ,xi) + γ(yi, ŷi)

]

+

γ(yi, ŷi)K(xi,xi)
.

(13)

4 A Batch Conversion

In the previous section we presented an online algorithm for hierarchical phoneme
classification. Often, the entire training set S = {(xi, yi)}

m
i=1 is available to the

learning algorithm in advance, the batch setting is more natural. As before, the
performance of a classifier f on a given example (x, y) is evaluated with respect
to the tree-induced error γ(y, f(x)). In contrast to online learning, where no
assumptions are made on the distribution of examples, in batch settings it is
assumed that the examples are independently sampled from a distribution D

over X × Y. Therefore, our goal is to use S to obtain a hierarchical classifier
f which attains a low expected tree-induced error, E(x,y)∼D [γ(y, f(x))], where
expectation is taken over the random selection of examples from D.

Perhaps the simplest idea is to use the online algorithm of Sec. 3 as a batch
algorithm by applying it to the training set S in some arbitrary order and defining
f to be the last classifier obtained by this process. The resulting classifier is the
one defined by the vector set {wv

m+1}v∈Y . In practice, this idea works reasonably
well, as demonstrated by our experiments (Sec. 5). However, a slight modification
of this idea yields a significantly better classifier with an accompanying bound
on expected tree-induced error. For every v ∈ Y, define wv = 1

m+1

∑m+1
i=1 wv

i ,
where {wv

i |1 ≤ i ≤ m + 1, v ∈ Y} is the set of vectors generated by the online
algorithm when it is applied to S. Now, let f be the classifier defined by {wv}v∈Y .
In words, we have defined the prototype for phoneme or phoneme group v to be
the average over all prototypes generated by the online algorithm for v. For a
general discussion on taking the average online hypothesis see [15].

5 Experiments

We begin this section with a comparison of the online algorithm and batch
algorithm with standard multiclass classifiers which are oblivious to the hierar-
chical structure of the phoneme set. We conducted experiments with a synthetic
dataset and a data set of phonemes extracted from continuous natural speech.

The synthetic data was generated as follows: we constructed a symmetric
trinary tree of depth 4 and used it as the hierarchical structure. This tree contains
121 vertices which are the “phonemes” of our multiclass problem. We then set
w0, . . . ,w120 to be some orthonormal set in IR121, and defined the 121 prototypes
to be Wv =

∑

u∈P(v) w
u. We generated 100 train vectors and 50 test vectors for

each “phoneme”. Each example was generated by setting (x, y) = (Wy + η, y),
where η is a vector of Gaussian noise generated by randomly drawing each of its
coordinates from a Gaussian distribution with expectation 0 and variance 0.16.
This dataset is referred to as synthetic in the figures and tables appearing in this
section. We didn’t use any kernel on this dataset in any of the experiments.

The second dataset used in our experiments is a corpus of continuous natural
speech for the task of phoneme classification. The data we used is a subset of the
TIMIT acoustic-phonetic dataset, which is a phonetically transcribed corpus of
high quality continuous speech spoken by North American speakers [18]. Mel-
frequency cepstrum coefficients (MFCC) along with their first and the second
derivatives were extracted from the speech in a standard way, based on the
ETSI standard for distributed speech recognition [19] and each feature vector
was generated from 5 adjacent MFCC vectors (with overlap). The TIMIT corpus
is divided into a training set and a test set in such a way that no speakers from
the training set appear in the test set (speaker independent). We randomly
selected 2000 training features vectors and 500 test feature vectors per each of
the 40 phonemes. We normalized the data to have zero mean and unit variance
and used an RBF kernel with σ = 0.5 in all the experiment with this dataset.

Table 1. Online algorithm results.

Data set Tree induced Multiclass
error error

Synthetic data (tree) 0.83 44.5

Synthetic data (flat) 1.35 51.1

Phonemes (tree) 1.64 40.0
Phonemes (flat) 1.72 39.7

Table 2. Batch algorithm results.

Data set Tree induced Multiclass
Last Batch Last Batch

Synthetic data (tree) 0.04 0.05 4.1 5.0

Synthetic data (flat) 0.14 0.11 10.8 8.6
Synthetic data (greedy) 0.57 0.52 37.4 34.9

Phonemes (tree) 1.88 1.30 48.0 40.6

Phonemes (flat) 2.01 1.41 48.8 41.8
Phonemes (greedy) 3.22 2.48 73.9 58.2

We trained and tested the online and batch versions of our algorithm on
the two datasets. To demonstrate the benefits of exploiting the hierarchal struc-
ture, we also trained and evaluated standard multiclass predictors which ig-
nore the structure. These classifiers were trained using the algorithm but with
a “flattened” version of the phoneme hierarchy. The (normalized) cumulative
tree-induced error and the percentage of multiclass errors for each experiment
are summarized in Table 1 (online experiments) and Table 2 (batch experi-
ments). Rows marked by tree refer to the performance of the algorithm train
with knowledge of the hierarchical structure, while rows marked by flat refer
to the performance of the classifier trained without knowledge of the hierarchy.
The results clearly indicate that exploiting the hierarchical structure is beneficial
in achieving low tree-induced errors. In all experiments, both online and batch,
the hierarchical phoneme classifier achieved lower tree-induced error than its
“flattened” counterpart. Furthermore, in most of the experiments the multiclass
error of the algorithm is also lower than the error of the corresponding multiclass
predictor, although the latter was explicitly trained to minimize the error. This
behavior exemplifies that employing a hierarchical phoneme structure may prove
useful even when the goal is not necessarily the minimization of some tree-based
error.

Further examination of results demonstrates that the hierarchical phoneme
classifier tends to tolerate small tree-induced errors while avoiding large ones.
In Fig. 4 we depict the differences between the error rate of the batch algorithm
and the error rate of a standard multiclass predictor. Each bar corresponds to
a different value of γ(y, ŷ), starting from the left with a value of 1 and ending

Last hypothesis The batch algorithm

S
y
n
th

et
ic

d
a
ta

1 2 3 4 5 6 7 8

−0.02

−0.01

0

0.01

0.02

1 2 3 4 5 6 7 8

−0.02

−0.01

0

0.01

0.02

P
h
o
n
em

es

1 2 3 4 5 6 7 8
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Fig. 4. The distribution of the tree induced-error for each dataset used in the experi-
ments. Each bar corresponds to the difference between the error of the batch algorithm
minus the error of a multiclass predictor.

on the right with the largest possible value of γ(y, ŷ). It is clear from the figure
that the batch algorithm tends to make “small” errors by predicting the parent
or a sibling of the correct phoneme. On the other hand the algorithm seldom
chooses a phoneme or a phoneme group which is in an entirely different part of
the tree, thus avoiding large tree induced errors. In the phoneme classification
task, the algorithm seldom extends a prediction ŷ such that γ(y, ŷ) = 9 while
the errors of the multiclass predictor are uniformly distributed.

We conclude the experiments with a comparison of the hierarchical algo-
rithm with a common construction of hierarchical classifiers (see for instance [6]),
where separate classifiers are learned and applied at each internal vertex of
the hierarchy independently. To compare the two approaches, we learned a
multiclass predictor at each internal vertex of the tree hierarchy. Each such
classifier routes an input feature vector to one of its children. Formally, for
each internal vertex v of T we trained a classifier fv using the training set
Sv = {(xi, ui)|ui ∈ P(yi), v = A(ui), (xi, yi) ∈ S}. Given a test feature vector x,
its predicted phoneme is the leaf ŷ such that for each u ∈ P(ŷ) and its parent
v we have fv(x) = u. In other words, to cast a prediction we start with the
root vertex and move towards one of the leaves by progressing from a vertex v

to fv(x). We refer to this hierarchical classification model in Table 2 simply as
greedy. In all of the experiments, the batch algorithm clearly outperforms greedy.

This experiment underscores the usefulness of our approach which makes global
decisions in contrast to the local decisions of the greedy construction. Indeed,
any single prediction error at any of the vertices along the path to the correct
phoneme will impose a global prediction error.

Acknowledgment

This work was supported by EU PASCAL network of excellence.

References

1. Deller, J., Proakis, J., Hansen, J.: Discrete-Time Processing of Speech Signals.
Prentice-Hall (1987)

2. Rabiner, L.R., Schafer, R.W.: Digital Processing of Speech Signals. Prentice-Hall
(1978)

3. Robinson, A.J.: An application of recurrent nets to phone probability estimation.
IEEE Transactions on Neural Networks 5 (1994) 298–305

4. Clarkson, P., Moreno, P.: On the use of support vector machines for phonetic
classification. In: Proceedings of the International Conference on Acoustics, Speech
and Signal Processing 1999, Phoenix, Arizona (1999)

5. Salomon, J.: Support vector machines for phoneme classification. Master’s thesis,
University of Edinburgh (2001)

6. Koller, D., Sahami, M.: Hierarchically classifying docuemnts using very few words.
In: Machine Learning: Proceedings of the Fourteenth International Conference.
(1997) 171–178

7. McCallum, A.K., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classifi-
cation by shrinkage in a hierarchy of classes. In: Proceedings of ICML-98. (1998)
359–367

8. Weigend, A.S., Wiener, E.D., Pedersen, J.O.: Exploiting hierarchy in text catego-
rization. Information Retrieval 1 (1999) 193–216

9. Dumais, S.T., Chen, H.: Hierarchical classification of Web content. In: Proceedings
of SIGIR-00. (2000) 256–263

10. Katz, S.: Estimation of probabilities from sparsedata for the language model com-
ponent of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal
Processing (ASSP) 35 (1987) 400–40

11. Vapnik, V.N.: Statistical Learning Theory. Wiley (1998)
12. Crammer, K., Dekel, O., Shalev-Shwartz, S., Singer, Y.: Online passive aggressive

algorithms. In: Advances in Neural Information Processing Systems 16. (2003)
13. Herbster, M.: Learning additive models online with fast evaluating kernels. In: Pro-

ceedings of the Fourteenth Annual Conference on Computational Learning Theory.
(2001) 444–460

14. Kivinen, J., Warmuth, M.K.: Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation 132 (1997) 1–64

15. Cesa-Bianchi, N., Conconi, A., C.Gentile: On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory (2004) (to appear).

16. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recog-
nition. In: Proceedings of the Seventh European Symposium on Artificial Neural
Networks. (1999)

17. Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms, and Applica-
tions. Oxford University Press, New York, NY, USA (1997)

18. Lemel, L., Kassel, R., Seneff, S.: Speech database development: Design and anal-
ysis . Report no. SAIC-86/1546, Proc. DARPA Speech Recognition Workshop
(1986)

19. ETSI Standard, ETSI ES 201 108 (2000)

