
Multiclass Learning by Probabilistic Embeddings

Ofer Dekel and Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{oferd,singer}@cs.huji.ac.il

Abstract

We describe a new algorithmic framework for learning multiclass catego-
rization problems. In this framework a multiclass predictor is composed
of a pair of embeddings that map both instances and labels into a common
space. In this space each instance is assigned the label it is nearest to. We
outline and analyze an algorithm, termed Bunching, for learning the pair
of embeddings from labeled data. A key construction in the analysis of
the algorithm is the notion of probabilistic output codes, a generaliza-
tion of error correcting output codes (ECOC). Furthermore, the method
of multiclass categorization using ECOC is shown to be an instance of
Bunching. We demonstrate the advantage of Bunching over ECOC by
comparing their performance on numerous categorization problems.

1 Introduction

The focus of this paper is supervised learning from multiclass data. In multiclass problems
the goal is to learn a classifier that accurately assigns labels to instances where the set of
labels is of finite cardinality and contains more than two elements. Many machine learning
applications employ a multiclass categorization stage. Notable examples are document
classification, spoken dialog categorization, optical character recognition (OCR), and part-
of-speech tagging. Dietterich and Bakiri [6] proposed a technique based on error correcting
output coding (ECOC) as a means of reducing a multiclass classification problem to several
binary classification problems and then solving each binary problem individually to obtain
a multiclass classifier. More recent work of Allwein et al. [1] provided analysis of the
empirical and generalization errors of ECOC-based classifiers. In the above papers, as well
as in most previous work on ECOC, learning the set of binary classifiers and selecting a
particular error correcting code are done independently. An exception is a method based
on continuous relaxation of the code [3] in which the code matrix is post-processed once
based on the learned binary classifiers.

The inherent decoupling of the learning process from the class representation problem em-
ployed by ECOC is both a blessing and a curse. On one hand it offers great flexibility and
modularity, on the other hand, the resulting binary learning problems might be unnatural
and therefore potentially difficult. We instead describe and analyze an approach that ties the
learning problem with the class representation problem. The approach we take perceives
the set of binary classifiers as an embedding of the instance space and the code matrix as
an embedding of the label set into a common space. In this common space each instance is
assigned the label from which it’s divergence is smallest. To construct these embeddings,
we introduce the notion of probabilistic output codes. We then describe an algorithm that
constructs the label and instance embeddings such that the resulting classifier achieves a
small empirical error. The result is a paradigm that includes ECOC as a special case.

The algorithm we describe, termed Bunching, alternates between two steps. One step im-
proves the embedding of the instance space into the common space while keeping the
embedding of the label set fixed. This step is analogous to the learning stage of the ECOC
technique, where a set of binary classifiers are learned with respect to a predefined code.
The second step complements the first by updating the label embedding while keeping the
instance embedding fixed. The two alternating steps resemble the steps performed by the
EM algorithm [5] and by Alternating Minimization [4]. The techniques we use in the de-
sign and analysis of the Bunching algorithm also build on recent results in classification
learning using Bregman divergences [8, 2].

The paper is organized as follows. In the next section we give a formal description of
the multiclass learning problem and of our classification setting. In Sec. 3 we give an
alternative view of ECOC which naturally leads to the definition of probabilistic output
codes presented in Sec. 4. In Sec. 5 we cast our learning problem as a minimization problem
of a continuous objective function and in Sec. 6 we present the Bunching algorithm. We
describe experimental results that demonstrate the merits of our approach in Sec. 7 and
conclude in Sec. 8.

2 Problem Setting

Let X be a domain of instance encodings from
�

m and let Y be a set of r labels that can
be assigned to each instance from X . Given a training set of instance-label pairs S =
(xj , yj)

n
j=1 such that each xj is in X and each yj is in Y , we are faced with the problem of

learning a classification function that predicts the labels of instances from X . This problem
is often referred to as multiclass learning. In other multiclass problem settings it is common
to encode the set Y as a prefix of the integers {1, . . . , r}, however in our setting it will prove
useful to assume that the labels are encoded as the set of r standard unit vectors in

�
r . That

is, the i’th label in Y is encoded by the vector whose i’th component is set to 1, and all of
its other components are set to 0.

s

Figure 1: An illustration of
the embedding model used.

The classification functions we study in this paper are
composed of a pair of embeddings from the spaces X and
Y into a common space Z , and a measure of divergence
between vectors in Z . That is, given an instance x ∈ X ,
we embed it into Z along with all of the label vectors
in Y and predict the label that x is closest to in Z . The
measure of distance between vectors in Z builds upon the
definitions given below:

The logistic transformation σ :
�

s → (0, 1)s is defined

∀k = 1, ..., s σk(ω) = (1 + e−ωk)−1

The entropy of a multivariate Bernoulli random variable with parameter p ∈ [0, 1]s is

H [p] = −

s
∑

k=1

[pk log(pk) + (1 − pk) log(1 − pk)] .

The Kullback-Leibler (KL) divergence between a pair of multivariate Bernoulli random
variables with respective parameters p, q ∈ [0, 1]s is

D[p ‖ q] =

s
∑

k=1

[

pk log

(

pk

qk

)

+ (1 − pk) log

(

1 − pk

1 − qk

)]

. (1)

Returning to our method of classification, let s be some positive integer and let Z denote
the space [0, 1]s. Given any two linear mappings T :

�
m →

�
s and C :

�
r →

�
s , where

T is given as a matrix in
�

s×m and C as a matrix in
�

s×r , instances from X are embedded
into Z by σ(Tx) and labels from Y are embedded into Z by σ(Cy). An illustration of the
two embeddings is given in Fig. 1.

We define the divergence between any two points z1, z2 ∈ Z as the sum of the KL-
divergence between them and the entropy of z1, D[z1 ‖ z2] + H [z1]. We now define
the loss ` of each instance-label pair as the divergence of their respective images,

`(x, y|C, T) = D[σ(Cy) ‖ σ(Tx)] + H [σ(Cy)] . (2)

This loss is clearly non-negative and can be zero iff x and y are embedded to the same
point in Z and the entropy of this point is zero. ` is our means of classifying new instances:
given a new instance we predict its label to be ŷ if

ŷ = argmin
y∈Y

`(x, y|C, T) . (3)

For brevity, we restrict ourselves to the case where only a single label attains the minimum
loss, and our classifier is thus always well defined. We point out that our analysis is still
valid when this constraint is relaxed. We name the loss over the entire training set S the
empirical loss and use the notation

L(S|C, T) =
∑

(x,y)∈S

`(x, y|C, T) . (4)

Our goal is to learn a good multiclass prediction function by finding a pair (C, T) that
attains a small empirical loss. As we show in the sequel, the rationale behind this choice
of empirical loss lies in the fact that it bounds the (discrete) empirical classification error
attained by the classification function.

3 An Alternative View of Error Correcting Output Codes

The technique of ECOC uses error correcting codes to reduce an r-class classification prob-
lem to multiple binary problems. Each binary problem is then learned independently via
an external binary learning algorithm and the learned binary classifiers are combined into
one r-class classifier. We begin by giving a brief overview of ECOC for the case where the
binary learning algorithm used is a logistic regressor.

A binary output code C is a matrix in {0, 1}s×r where each of C’s columns is an s-bit
code word that corresponds to a label in Y . Recall that the set of labels Y is assumed to
be the standard unit vectors in

�
r . Therefore, the code word corresponding to the label y

is simply the product of the matrix C and the vector y, Cy. The distance ρ of a code C is
defined as the minimal Hamming distance between any two code words, formally

ρ(C) = min
i6=j

s
∑

k=1

Ck,i(1 − Ck,j) + Ck,j(1 − Ck,i) .

For any k ∈ {1, . . . , s}, the k’th row of C, denoted henceforth by Ck, defines a partition
of the set of labels Y into two disjoint subsets: the first subset constitutes labels for which
Ck · y = 0 (i.e., the set of labels in Y which are mapped according to Ck to the binary
label 0) and the labels for which Ck · y = 1. Thus, each Ck induces a binary classification
problem from the original multiclass problem. Formally, we construct for each k a binary-
labeled sample Sk = {(xj , Ck · yj)}

n
j=1 and for each Sk we learn a binary classification

function Tk : X →
�

using a logistic regression algorithm. That is, for each original
instance xj and induced binary label Ck · yj we posit a logistic model that estimates the
conditional probability that Ck · yj equals 1 given xj ,

Pr[Ck · yj = 1| xj ; Tk] = σ(Tk · xj) . (5)

Given a predefined code matrix C the learning task at hand is to find T ?
k that maximizes the

log-likelihood of the labelling given in Sk,

T ?
k = argmax

Tk∈ � m

n
∑

j=1

log(Pr[Ck · yj | xj ; Tk]) . (6)

Defining 0 log 0 = 0, we can use the logistic estimate in Eq. (5) and the KL-divergence
from Eq. (1) to rewrite Eq. (6) as follows

T ?
k = argmin

Tk∈ � m

n
∑

j=1

D[Ck · yj ‖ σ(Tk · xj)] .

In words, a good set of binary predictors is found by minimizing the sample-averaged KL-
divergence between the binary vectors induced by C and the logistic estimates induced by
T1, . . . , Ts. Let T ? be the matrix in

�
s×m constructed by the concatenation of the row

vectors {T ?
k }

s
k=1. For any instance x ∈ X , σ(T ?x) is a vector of probability estimates

that the label of x is 1 for each of the s induced binary problems. We can summarize the
learning task defined by the code C as the task of finding a matrix T ? such that

T ? = argmin
T∈ � s×m

n
∑

j=1

D[Cyj ‖ σ(Txj)] .

Given a code matrix C and a transformation T we classify a new instance as follows,

ŷ = argmin
y∈Y

D[Cy ‖ σ(Tx)] . (7)

A classification error occurs if the predicted label ŷ is different from the correct label y.
Building on Thm. 1 from Allwein et al. [1] it is straightforward to show that the empirical
classification error (ŷ 6= y) is bounded above by the empirical KL-divergence between the
correct code word Cy and the estimated probabilities σ(Tx) divided by the code distance,

|{ŷj 6= yj}
n
j=1| ≤

∑n

j=1 D[Cyj ‖ σ(Txj)]

ρ(C)
. (8)

This bound is a special case of the bound given below in Thm. 1 for general probabilistic
output codes. We therefore defer the discussion on this bound to the following section.

4 Probabilistic Output Codes

We now describe a relaxation of binary output codes by defining the notion of probabilistic
output codes. We give a bound on the empirical error attained by a classifier that uses
probabilistic output codes which generalizes the bound in Eq. (8). The rationale for our
construction is that the discrete nature of ECOC can potentially induce difficult binary
classification problems. In contrast, probabilistic codes induce real-valued problems that
may be easier to learn.

Analogous to discrete codes, A probabilistic output code C is a matrix in
�

s×r used in
conjunction with the logistic transformation to produce a set of r probability vectors that
correspond to the r labels in Y . Namely, C maps each label y ∈ Y to the probabilistic code
word σ(Cy) ∈ [0, 1]s. As before, we assume that Y is the set of r standard unit vectors
in {0, 1}r and therefore each probabilistic code word is the image of one of C’s columns
under the logistic transformation. The natural extension of code distance to probabilistic
codes is achieved by replacing Hamming distance with expected Hamming distance. If
for each y ∈ Y and k ∈ {1, . . . , s} we view the k’th component of the code word that
corresponds to y as a Bernoulli random variable with parameter p = σk(Cy) then the
expected Hamming distance between the code word for classes i and j is,

s
∑

k=1

σk(Cyi)(1 − σk(Cyj)) + σk(Cyj)(1 − σk(Cyi)) .

Analogous to discrete codes we define the distance ρ of a code C as the minimum expected
Hamming distance between all pairs of code words in C, that is,

ρ(C) = min
i6=j

s
∑

k=1

σk(Cyi)(1 − σk(Cyj)) + σk(Cyj)(1 − σk(Cyi)) .

Put another way, we have relaxed the definition of code words from deterministic vectors
to multivariate Bernoulli random variables. The matrix C now defines the distributions of
these random variables. When C’s entries are all ±∞ then the logistic transformation of
C’s entries defines a deterministic code and the two definitions of ρ coincide.

Given a probabilistic code matrix C ∈
�

s×r and a transformation T ∈
�

s×m we associate
a loss `(x, y|C, T) with each instance-label pair (x, y) using Eq. (2) and we measure the
empirical loss over the entire training set S as defined in Eq. (4). We classify new instances
by finding the label ŷ that attains the smallest loss as defined in Eq. (3). This construction is
equivalent to the classification method discussed in Sec. 2 that employs embeddings except
that instead of viewing C and T as abstract embeddings C is interpreted as a probabilistic
output code and the rows of T are viewed as binary classifiers.

Note that when all of the entries of C are ±∞ then the classification rule from Eq. (3) is
reduced to the classification rule for ECOC from Eq. (7) since the entropy of σ(Cy) is zero
for all y. We now give a theorem that builds on our construction of probabilistic output
codes and relates the classification rule from Eq. (3) with the empirical loss defined by
Eq. (4). As noted before, the theorem generalizes the bound given in Eq. (8).

Theorem 1 Let Y be a set of r vectors in
�

r . Let C ∈
�

s×r be a probabilistic output
code with distance ρ(C) and let T ∈

�
s×m be a transformation matrix. Given a sample

S = {(xj , yj)}
n
i=j of instance-label pairs where xj ∈ X and yj ∈ Y , denote by L the loss

on S with respect to C and T as given by Eq. (4) and denote by ŷj the predicted label of
xj according to the classification rule given in Eq. (3). Then,

|{ŷj 6= yj}
n

j=1| ≤
L(S|C, T)

ρ(C)
.

The proof of the theorem is omitted due to the lack of space.

5 The Learning Problem

We now discuss how our formalism of probabilistic output codes via embeddings and the
accompanying Thm. 1 lead to a learning paradigm in which both T and C are found con-
currently. Thm. 1 implies that the empirical error over S can be reduced by minimizing the
empirical loss over S while maintaining a large distance ρ(C). A naive modification of C
so as to minimize the loss may result in a probabilistic code whose distance is undesirably
small. Therefore, we assume that we are initially provided with a fixed reference matrix
C0 ∈

�
s×r that is known to have a large code distance. We now require that the learned

matrix C remain relatively close to C0 (in a sense defined shortly) throughout the learning
procedure. Rather than requiring that C attain a fixed distance to C0 we add a penalty
proportional to the distance between C and C0 to the loss defined in Eq. (4). This penalty
on C can be viewed as a form of regularization (see for instance [10]). Similar paradigms
have been used extensively in the pioneering work of Warmuth and his colleagues on on-
line learning (see for instance [7] and the references therein) and more recently for incor-
porating prior knowledge into boosting [11]. The regularization factor we employ is the
KL-divergence between the images of C and C0 under the logistic transformation,

R(S|C, C0) =

n
∑

j=1

D[σ(Cyj) ‖ σ(C0yj)] .

The influence of this penalty term is controlled by a parameter α ∈ [0,∞]. The resulting
objective function that we attempt to minimize is

O(S|C, T) = L(S|C, T) + αR(S|C, C0) (9)

where α and C0 are fixed parameters. The goal of learning boils down to finding a pair
(C?, T ?) that minimizes the objective function defined in Eq. (9). We would like to note
that this objective function is not convex due to the concave entropic term in the defini-
tion of `. Therefore, the learning procedure described in the sequel converges to a local
minimum or a saddle point of O.

6 The Learning Algorithm
BUNCH

�
S, α ∈ � +, C0 ∈ � s×r , T0 ∈ � s×m �

For t = 1, 2, ...
Tt = IMPROVE-T (S, Ct−1, Tt−1)
Ct = IMPROVE-C (S, α, Tt, C0)

IMPROVE-T (S, C, T)
For k = 1, 2, ..., s and i = 1, 2, ..., m

W
+
k,i = �

(x,y)∈S

σ(Cky) σ(−Tkx) xi

W
−

k,i = �
(x,y)∈S

σ(−Cky) σ(Tkx) xi

Θk,i =
1

2
ln

�
W+

k,i

W−

k,i �
Return T + Θ

IMPROVE-C (S, α, T , C0)
For each y ∈ Y

Sy = {(x, ȳ) ∈ S : ȳ = y}

C
(y) = C

(y)
0 +

1

α|Sy|
�

x∈Sy

Tx

Return C = � C(1), . . . , C(r) �
Figure 2: The Bunching Algorithm.

The goal of the learning algorithm is to
find C and T that minimize the objec-
tive function defined above. The algo-
rithm alternates between two comple-
menting steps for decreasing the ob-
jective function. The first step, called
IMPROVE-T, improves T leaving C
unchanged, and the second step, called
IMPROVE-C, finds the optimal matrix
C for any given matrix T . The al-
gorithm is provided with initial matri-
ces C0 and T0, where C0 is assumed
to have a large code distance ρ. The
IMPROVE-T step makes the assump-
tion that all of the instances in S sat-
isfy the constraints

∑m

i=1 xi ≤ 1 and
for all i ∈ {1, 2, ..., m}, 0 ≤ xi. Any
finite training set can be easily shifted
and scaled to conform with these con-
straints and therefore they do not im-
pose any real limitation. In addition,
the IMPROVE-C step is presented for
the case where Y is the set of standard
unit vectors in

�
r .

Since the regularization factor R is independent of T we can restrict our description and
analysis of the IMPROVE-T step to considering only the loss term L of the objective func-
tion O. The IMPROVE-T step receives the current matrices C and T as input and calculates
a matrix Θ that is used for updating the current T additively. Denoting the iteration index
by t, the update is of the form Tt+1 = Tt + Θ. The next theorem states that updating T by
the IMPROVE-T step decreases the loss or otherwise T remains unchanged and is globally
optimal with respect to C. Again, the proof is omitted due to space constraints.

Theorem 2 Given matrices C ∈
�

s×r and T ∈
�

s×m , let W+
k,i, W−

k,i and Θ be as defined
in the IMPROVE-T step of Fig. 2. Then, the decrease in the loss L is bounded below by,

s
∑

k=1

m
∑

i=1

(
√

W+
k,i −

√

W−
k,i

)2

≤ L(S|C, T) −L(S|C, T + Θ) .

Based on the theorem above we can derive the following corollary

Corollary 1 If Θ is generated by a call to IMPROVE-T and L(S|C, T + Θ) = L(S|C, T)
then Θ is the zero matrix and T is globally optimal with respect to C.

In the IMPROVE-C step we fix the current matrix T and find a code matrix C that globally
minimizes the objective function. According to the discussion above, the matrix C defines

an embedding of the label vectors from Y into Z and the images of this embedding con-
stitute the classification rule. For each y ∈ Y denote its image under C and the logistic
transformation by py = σ(Cy) and let Sy be the subset of S that is labeled y. Note that the
objective function can be decomposed into r separate summands according to y,

O(S|C, T) =
∑

y∈Y

O(Sy |C, T) ,

where

O(Sy|C, T) =
∑

(x,y)∈Sy

D[py ‖ σ(Tx)] + H [py] + αD[py ‖ σ(C0y0)] .

We can therefore find for each y ∈ Y the vector py that minimizes O(Sy) independently
and then reconstruct the code matrix C that achieves these values. It is straightforward to
show that O(Sy) is convex in py, and our task is reduced to finding it’s stationary point.
We examine the derivative of O(Sy) with respect to py,k and get,

∂Oy(Sy)

∂py,k

=
∑

(x,y)∈Sy

− log

(

σ(Tk · x)

1 − σ(Tk · x)

)

− α|Sy|

(

C0,k · y + log

(

py,k

1 − py,k

))

.

We now plug py = σ(Cy) into the equation above and evaluate it at zero to get that,

Cy = C0y +
1

α|Sy|

∑

(x,y)∈Sy

Tx .

Since Y was assumed to be the set of standard unit vectors, Cy is a column of C and the
above is simply a column wise assignment of C.

We have shown that each call to IMPROVE-T followed by IMPROVE-C decreases the ob-
jective function until convergence to a pair (C?, T ?) such that C? is optimal given T ? and
T ? is optimal given C?. Therefore O(S|C?, T ?) is either a minimum or a saddle point.

7 Experiments

glass isolet letter mnist satimage soybean vowel
−10

0

10

20

30

40

50

60

70

R
el

at
iv

e
pe

rf
or

m
an

ce
 %

random
one−vs−rest

Figure 3: The relative performance of Bunching
compared to ECOC on various datasets.

To assess the merits of Bunching we
compared it to a standard ECOC-
based algorithm on numerous mul-
ticlass problems. For the ECOC-
based algorithm we used a logistic re-
gressor as the binary learning algo-
rithm, trained using the parallel up-
date described in [2]. The two ap-
proaches share the same form of clas-
sifiers (logistic regressors) and differ
solely in the coding matrix they em-
ploy: while ECOC uses a fixed code
matrix Bunching adapts its code ma-
trix during the learning process.

We selected the following multiclass
datasets: glass, isolet, letter,
satimage, soybean and vowel
from the UCI repository (www.ics.uci.edu/∼mlearn/MLRepository.html) and the mnist
dataset available from LeCun’s homepage (yann.lecun.com/exdb/mnist/index.html). The
only dataset not supplied with a test set is glass for which we use 5-fold cross validation.

For each dataset, we compare the test error rate attained by the ECOC classifier and the
Bunching classifier. We conducted the experiments for two families of code matrices. The

first family corresponds to the one-vs-rest approach in which each class is trained against
the rest of the classes and the corresponding code is a matrix whose logistic transformation
is simply the identity matrix. The second family is the set of random code matrices with
r log2 r rows where r is the number of different labels. These matrices are used as C0

for Bunching and as the fixed code for ECOC. Throughout all of the experiments with
Bunching, we set the regularization parameter α to 1.

A summary of the results is depicted in Fig. 3. The height of each bar is proportional to
(eE − eB)/eE where eE is the test error attained by the ECOC classifier and eB is the
test error attained by the Bunching classifier. As shown in the figure, for almost all of
the experiments conducted Bunching outperforms standard ECOC. The improvement is
more significant when using random code matrices. This can be explained by the fact that
random code matrices tend to induce unnatural and rather difficult binary partitions of the
set of labels. Since Bunching modifies the code matrix C along its run, it can relax difficult
binary problems. This suggests that Bunching can improve the classification accuracy in
problems where, for instance, the one-vs-rest approach fails to give good results or when
there is a need to add error correction properties to the code matrix.

8 A Brief Discussion

In this paper we described a framework for solving multiclass problems via pairs of embed-
dings. The proposed framework can be viewed as a generalization of ECOC with logistic
regressors. It is possible to extend our framework in a few ways. First, the probabilistic
embeddings can be replaced with non-negative embeddings by replacing the logistic trans-
formation with the exponential function. In this case, the KL divergence is replaced with
its unormalized version [2, 9]. The resulting generalized Bunching algorithm is somewhat
more involved and less intuitive to understand. Second, while our work focuses on linear
embeddings, our algorithm and analysis can be adapted to more complex mappings by em-
ploying kernel operators. This can be achieved by replacing the k’th scalar-product Tk · x
with an abstract inner-product κ(Tk, x). Last, we would like to note that it is possible to
devise an alternative objective function to the one given in Eq. (9) which is jointly convex
in (T, σ(C)) and for which we can state a bound of a form similar to the bound in Thm. 1.

References
[1] E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach

for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.
[2] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, adaboost and

bregman distances. Machine Learning, 47(2/3):253–285, 2002.
[3] K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass prob-

lems. In Proc. of the Thirteenth Annual Conference on Computational Learning Theory, 2000.
[4] I. Csiszár and G. Tusnády. Information geometry and alternaning minimization procedures.

Statistics and Decisions, Supplement Issue, 1:205–237, 1984.
[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, Ser. B, 39:1–38, 1977.
[6] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, 2:263–286, January 1995.
[7] Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponentiated gradient updates for

linear prediction. Information and Computation, 132(1):1–64, January 1997.
[8] John D. Lafferty. Additive models, boosting and inference for generalized divergences. In

Proceedings of the Twelfth Annual Conference on Computational Learning Theory, 1999.
[9] S. Della Pietra, V. Della Pietra, and J. Lafferty. Duality and auxilary functions for Bregman

distances. Technical Report CS-01-10, CMU, 2002.
[10] T. Poggio and F. Girosi. Networks for approximation and learning. Proc. of IEEE, 78(9), 1990.
[11] R.E. Schapire, M. Rochery, M. Rahim, and N. Gupta. Incorporating prior knowledge into

boosting. In Machine Learning: Proceedings of the Nineteenth International Conference, 2002.

