
Smooth ε-Insensitive Regression by Loss

Symmetrization

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer

School of Computer Science, Hebrew University, Jerusalem, Israel
{oferd,shais,singer}@cs.huji.ac.il

Abstract. We describe a framework for solving regression problems by
reduction to classification. Our reduction is based on symmetrization
of margin-based loss functions commonly used in boosting algorithms,
namely, the logistic loss and the exponential loss. Our construction yields
a smooth version of the ε-insensitive hinge loss that is used in support
vector regression. A byproduct of this construction is a new simple form
of regularization for boosting-based classification and regression algo-
rithms. We present two parametric families of batch learning algorithms
for minimizing these losses. The first family employs a log-additive up-
date and is based on recent boosting algorithms while the second family
uses a new form of additive update. We also describe and analyze online
gradient descent (GD) and exponentiated gradient (EG) algorithms for
the ε-insensitive logistic loss. Our regression framework also has implica-
tions on classification algorithms, namely, a new additive batch algorithm
for the log-loss and exp-loss used in boosting.

1 Introduction

The focus of the paper is supervised learning of real-valued regression func-
tions. In the settings we discuss in this paper, we observe a sequence S =
{(x1, y1), . . . , (xm, ym)} of instance-target pairs. For concreteness, we assume
that the instances are vectors in

� n and that the targets are real-valued scalars,
yi ∈ �

. We denote the j’th component of an instance xi by xi,j . Our goal is
to learn a function f :

� n → �
which provides a good approximation of tar-

get values from their corresponding instance vectors. Such a function is often
referred to as a regression function or a regressor for short. In this paper we
focus on learning linear regressors, that is, f is of the form f(x) = λ · x. This
setting is also suitable for learning a linear combination of base regressors of the
form f(x) =

∑l
j=1 λjhj(x) = λ · h(x) where hj : X → �

, X is an instance
domain, and h(x) = (h1(x), . . . , hl(x)). The latter form enables us to employ
kernels by setting hj(x) = K(xj ,x). Since the class of regressors we consider is
rather restricted and due to the existence of noise, a perfect mapping such that
for all (xi, yi) ∈ S, f(xi) = yi might not exist. Hence, we employ a loss function
L :

� × � → �
+ which measures the discrepancy between the predicted target,

f(x), and the true (observed) target y. As we discuss shortly, the loss functions
we consider in this paper depend only on the discrepancy δ = f(x) − y hence

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

6

7

8

9

10

Hinge−loss
Log−loss
Exp−loss

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

6

7

8

9

10

Abs−loss
Log−loss
Exp−loss

−15 −10 −5 0 5 10 15
−1

0

1

2

3

4

5

6

7

8

9
|δ|ε
Log−loss

−150 −100 −50 0 50 100 150
−10

0

10

20

30

40

50

60

70

80

90

100

Comb−loss

Fig. 1. Constructing regression losses (second-left) by symmetrization of margin losses
(left). The smooth ε-insensitive log-loss (second-right) and the combined loss (right).

L can be viewed as a function from
�

into
�

+ and is denoted by L(δ). Given a
loss function L, the goal of a regression algorithm is to find a regressor f which
attains a small cumulative loss on the training set S,

Loss(λ, S) =

m
∑

i=1

L(f(xi) − yi) =

m
∑

i=1

L(λ · xi − yi) .

Regression problems have long been the focus of many research papers in statis-
tics and learning theory. See for instance the book by Hastie, Tibshirani, and
Friedman [6] and the references therein. Denote the discrepancy λ · xi − yi by
δi. Two common approaches for regression minimize either the sum of the ab-
solute discrepancies over the sample (

∑

i |δi|) or the square of the discrepancies
(
∑

i δ2
i). It has been argued that the squared loss is sensitive to outliers, hence

robust regression algorithms often employ the absolute loss [7].
Furthermore, it is often the case that the exact discrepancy between λ·x and y

is unimportant so long as this discrepancy falls below an insensitivity parameter
ε. Formally, the ε-insensitive hinge loss, denoted |δ|ε, is zero if |δ| ≤ ε and is |δ|−ε
for |δ| > ε (see also Fig. 1). Whether ε = 0 or not, the ε-insensitive hinge loss is
not smooth as its derivative is discontinuous at δ = ±ε. While the non-smooth
nature of the ε-insensitive hinge loss led to the design and analysis of efficient
batch learning algorithms (cf. [14, 13]), it also poses algorithmic difficulties. In
this paper we discuss and analyze a smooth approximation of the ε-insensitive
hinge loss. Formally, we define the following loss,

Llog(δ; ε) = log
(

1 + eδ−ε
)

+ log
(

1 + e−δ−ε
)

+ κ . (1)

Whenever it is clear from context we simply denote the loss as Llog(δ). We term
this loss the symmetric ε-insensitive logistic loss and for brevity, we refer to it
simply as the log-loss. The constant κ equals 2 log(1 + e−ε) and is set so that
Llog(0) = 0. Since additive constants do not change the form of the optimal
regressor we henceforth omit this constant. In Fig. 1 we depict the above loss
along with the ε-insensitive hinge loss for ε = 5. Note that the ε-insensitive
log-loss provides a smooth upper bound on the ε-insensitive hinge loss, and that
with this particular choice of ε we get that for |δ| < 2 and |δ| > 8 the smooth
and non-smooth ε-insensitive losses are graphically indistinguishable.

To motivate our construction, let us make a short detour and discuss a recent
view of classification algorithms. In the binary classification setting discussed

in [5, 2, 10], we are provided with instance-label pairs, (x, y), where, in contrast
to regression, each label takes one of two values, namely y ∈ {−1, +1}. A real-
valued classifier is a function f into the reals such that sign(f(x)) is the predicted
label and the magnitude, |f(x)|, is the confidence of f in its prediction. The
product yf(x) is called the (signed) margin of the instance-label pair (x, y). The
goal of a margin-based classifier is to attain large margin values on as many
instances as possible. Learning algorithms for margin-based classifiers typically
employ a margin-based loss function Lc(yf(x)) and attempt to minimize the
cumulative loss over a given sample. One of the margin losses discussed is the
logistic loss, that takes the form

Lc(yf(x)) = log
(

1 + e−yf(x)
)

. (2)

We use the loss in Eq. (2) as a building block in the construction of the regression
loss (Eq. (1)). Denote by [u ; v] the concatenation of an additional element v to
the end of a vector u. We replace every instance-target pair (x, y) from the
regression problem with two classification instance-label pairs,

(x, y) 7→
{

([x ; −y + ε] , +1)
([x ; −y − ε] , −1)

.

In words, we duplicate each regression instance and create two classification in-
stances. We then increase the dimension by one and concatenate −y + ε to the
first newly created instance and set its label to +1. Symmetrically, we concate-
nate −y− ε to the second duplicate and set its label to −1. We define the linear
classifier to be the vector [λ ; 1] ∈ � n+1. It is simple to verify that,

Llog(λ · x − y ; ε) = Lc([λ ; 1] · [x ; −y + ε]) + Lc(−[λ ; 1] · [x ; −y − ε]) .

In Fig. 1 we give an illustration of the above construction. We have thus reduced
a regression problem of m instances in

� n and targets in
�

to a classification
problem with 2m instances in

� n+1 and binary labels.
The work in [2] gave a unified view of two margin losses: the logistic loss

defined by Eq. (2) and an exponential loss. An immediate benefit of our con-
struction is a similar unified account of the two respective regression losses.
Formally, we define the symmetric exponential loss for regression as follows,

Lexp(δ) = eδ + e−δ .

As for the log-loss, we simply refer to this loss as the exp-loss. The exp-loss
was first presented and analyzed by Duffy and Helmbold [3] in their pioneer-
ing work on leveraging regressors. Their view though is somewhat different as
it builds upon the notion of weak-learnability, yielding a different (sequential)
algorithm for regression. The exp-loss is by far less forgiving than the log-loss,
i.e. small discrepancies are amplified exponentially. While this property might be
undesirable in regression problems with numerous outliers, it can also serve as a
barrier that prevents the existence of any large discrepancy on the training set.

A nice property of this loss is that it provides a bound on the maximal absolute
discrepancy in the sample. To see this, note that the minimizer of

∑

i Lexp(δi)
is also the minimizer of log(

∑

i Lexp(δi)) which is a smooth approximation to
maxi |δi|. We can also combine the log-loss and the exp-loss with two different
insensitivity parameters and benefit both from a discrepancy insensitivity region
and from enforcing a smooth barrier on the maximal discrepancy. Formally, let
ε1 > 0 and ε2 > ε1 be two insensitivity parameters. We define the combined loss,
abbreviated as comb-loss, by Lcomb(δ; ε1, ε2) = Llog(δ; ε1) + Lexp(δ; ε2) , where
Lexp(δ; ε2) = e−ε2Lexp(δ). An illustration of the combined loss with ε1 = 50 and
ε2 = 100 is given in Fig. 1.

The paper is organized as follows. In Sec. 2 we describe a simple use of the
symmetric losses defined above as a means of regularizing λ. In Sec. 3 we de-
scribe and analyze a family of log-additive update algorithms for batch learning
settings. The algorithms are derived using the reduction outlined above and
by adapting proof techniques from [2] to our setting. In Sec. 4 we describe a
new family of additive update regression algorithms based on modified gradi-
ent descent. For both the log-additive and the additive updates, we provide a
boosting-style analysis of the decrease in loss. In Sec. 5 we shift our attention
to online learning algorithms for the ε-insensitive log-loss. Our algorithms and
regularization technique have implications on classification algorithms with both
the log-loss and the exp-loss. We briefly discuss these implications, illustrate the
merits of the two losses and conclude in Sec. 6.

2 Regularization

Regularization is a means of controlling the complexity of the regressor being
learned. In particular for linear regressors, regularization serves as a soft limit on
the magnitude of the elements of λ (cf. [11]). The losses we discussed in the pre-
vious section can provide a new form of regularization. For the log-loss, the reg-
ularization applied to the j’th coordinate of λ is, log

(

1 + eλj
)

+log
(

1 + e−λj
)

.
The minimum of the above equation is obtained at λj = 0. It is straightforward
to show that the regularization term above is bounded below by |λj | and above
by |λj | + 2. Therefore, summing over all possible indices j, the regularization
term on λ lies between ‖λ‖1 and ‖λ‖1 + 2n. Thus, this form of regularization
can be viewed as a smooth approximation to the `1 norm. A similar regular-
ization can be imposed using the exp-loss, namely, eλj + e−λj . For both losses,
the j’th regularization term equals L(λj ; 0). An equivalent way to impose this
form of regularization is to introduce a set of pseudo examples Sreg = {xk, 0}n

k=1

where xk = 1k (a vector with 1 at its k’th position and zeros elsewhere).
Let ν > 0 denote a regularization parameter that governs the relative impor-

tance of the regularization term with respect to the empirical loss. The sample
loss with regularization becomes, Loss(λ, ν, S) = Loss(λ, S) + ν Loss(λ, Sreg).
The batch algorithms we describe in the sequel easily accommodate a weighted
sample. Therefore, by introducing a set of n pseudo-examples weighted by ν, we
can incorporate regularization into our batch algorithms without any modifica-
tion to the core of the algorithms. It is simple to verify that the above regular-

Input: Training set S = {(xi, yi) |xi ∈
� n, yi ∈

�
}m

i=1 ; Insensitivity ε ∈
�

+

Update templates A ⊆
� n

+ s.t. ∀a ∈ A maxi

���
n

j=1
aj |xi,j | � ≤ 1

Initialize: � 1 = (0, 0, . . . , 0)

Iterate: For t = 1, 2, . . .

δt,i = � t·xi−yi q−t,i =
1

1 + e−δt,i+ε
q+

t,i =
1

1 + eδt,i+ε
(1 ≤ i ≤ m)

W−
t,j = �

i:xi,j≥0

q−t,i xi,j − �
i:xi,j<0

q+

t,i xi,j (1 ≤ j ≤ n)

W+

t,j = �
i:xi,j≥0

q+

t,i xi,j − �
i:xi,j<0

q−t,i xi,j (1 ≤ j ≤ n)

at = argmax
a∈A

n�
j=1

aj ��� W−
t,j − � W+

t,j 	 2

Λt,j =
at,j

2
log
 W+

t,j

W−
t,j � (1 ≤ j ≤ n)� t+1 = � t + � t

Fig. 2. A log-additive update algorithm for minimizing the log-loss.

ization forces the optimal solution λ? to be unique and with finite elements. We
use this property in the convergence analysis of the batch algorithms.

3 Log-additive Update for Batch Regression

In the previous section we discussed a general reduction from regression problems
to margin-based classification problems. As a first application of this reduction,
we devise a family of batch regression learning algorithms based on boosting
techniques. We term these algorithms log-additive update algorithms as they
iteratively add to λ a logarithmic function of the gradient of the loss.

Our implicit goal is to obtain the (global) minimizer of the empirical loss
function

∑m
i=1 L(λ · xi − yi) where L is either the log-loss, the exp-loss or the

comb-loss. For the sake of clarity, we present algorithms and proofs only for
the log-loss. We then complete our presentation with a brief discussion on how
everything carries over to settings that employ the exp-loss or the comb-loss.

Following the general paradigm of boosting, we make the assumption that
we have access to a set of predefined base regressors. These base regressors are
analogous to the weak hypotheses commonly discussed in boosting. The goal of
the learning algorithm is to select a subset of base regressors and combine them
linearly to obtain a highly accurate strong regressor. We assume that the set of
base regressors is of finite cardinality though our algorithms can be generalized
to a countably infinite number of base regressors. In the finite case we can simply

map each input instance to the vector of images with respect to each of the base-
regressors, x 7→ (h1(x), . . . , hn(x)) where n is the number or base-regressors.
Using this transformation, each input instance is a vector xi ∈ � n and the
strong regressor’s prediction is λ · x.

Boosting was initially described and analyzed as a sequential algorithm that
iteratively selects a base-hypothesis or a feature and changes its weight. All of the
elements of λ are initialized to be zero, so after performing T sequential update
iterations, at most T elements of λ are non-zero. Thus, the sequential update
can be used for feature selection as well as loss optimization. An alternative
approach is to simultaneously update all of the elements of λ on every iteration.
This approach is the more common among regression algorithms. Collins et
al. [2] described a unified framework of boosting algorithms for classification.
In that framework, the sequential and parallel update schemes are actually two
extremes of a general approach for applying iterative updates to λ. Following
Collins et al. we describe and analyze an algorithm that employs update templates
to determine specifically which subsets of the coordinates of λ may be updated
in parallel. This algorithm includes both sequential update and parallel update
paradigms as special cases by setting the templates accordingly, and allows us
to discuss and prove correctness of both algorithms in a unified manner.

In this unified approach, we are required to pre-specify to the algorithm which
subsets of the coordinates of λ may be updated simultaneously. Formally, the
algorithm is given a set of update templates A, where every template a ∈ A is
a vector in

� n
+. On every iteration, the algorithm selects a template a ∈ A and

updates only those elements λj for which aj is non-zero. We require that every
a ∈ A conform with the constraint

∑

j aj |xi,j | ≤ 1 for every instance xi in the
training set. The purpose of this requirement will become apparent in the proof
of Thm. 1. The parallel update is obtained by setting A to contain the single
vector (ρ, . . . , ρ) where ρ = (maxi ‖xi‖1)

−1. The sequential update is obtained
by setting A to be the set of vectors a1, . . . , an defined by

ak,j =

{

(maxi |xi,j |)−1
if j = k

0 if j 6= k .

The algorithm that we discuss is outlined in Fig. 2 and operates as follows.
During the process of building λ, we may encounter two different types of dis-
crepancies: underestimation and overestimation. If the predicted target λ · xi is
less than the correct target yi, we say that λ underestimates yi, if it is greater
we say that λ overestimates yi. For every instance-target pair in the training set,
we use a pair of weights q−t,i and q+

t,i to represent its discrepancies: q−t,i represents

the degree to which yi is overestimated by λt and analogously q+
t,i represents the

degree to which yi is underestimated by λt. We then proceed to calculate two
weighted sums over each coordinate of the instances: W−

t,j can be thought of as
the degree to which λt,j should be decreased in order to compensate for overes-
timation discrepancies. Symmetrically, W +

t,j represents the degree to which λt,j

should be increased. At this point, the algorithm selects the update template
at ∈ A with respect to which it will apply the update to λ. at is selected so as

to maximize the decrease in loss, according to a criterion that follows directly
from Thm. 1.

Finally, the update applied to each coordinate of λt is half the log ratio
between the respective elements of W +

t and W−

t , times the scaling factor at,j .
In the following theorem we prove a lower bound on the decrease in loss

on every iteration of the algorithm. We later use this bound to show that the
algorithm converges to the unique globally optimal regressor λ?.

Theorem 1. Let {(xi, yi)}m
i=1 be a training set of instance-target pairs where

for all i in 1, . . . , m, xi ∈ � n and yi ∈ �
. Then using the notation defined in

the algorithm outlined in Fig. 2, on every iteration t the decrease in the log-loss
satisfies,

Loss(λt, S) − Loss(λt+1, S) ≥
n
∑

j=1

at,j

(

√

W−

t,j −
√

W+
t,j

)2

.

Proof Define ∆t(i) to be the difference between the loss attained by λt and that
attained by λt+1 on an instance-target pair (xi, yi) in the training set, namely
∆t(i) = Llog(δt,i)−Llog(δt+1,i). Since λt+1 = λt +Λt then δt+1,i = δt,i +Λt ·xi.
Using this equality, and the identity 1/(1 + eα) = 1− 1/(1 + e−α), ∆t(i) can be
rewritten as follows,

∆t(i) = − log

(

1 + eδt+1,i −ε

1 + eδt,i−ε

)

− log

(

1 + e−δt+1,i −ε

1 + e−δt,i−ε

)

= − log

(

1 − 1

1 + e−(δt,i−ε)
+

e � t·xi

1 + e−(δt,i−ε)

)

− log

(

1 − 1

1 + e−(−δt,i−ε)
+

e− � t·xi

1 + e−(−δt,i−ε)

)

.

We can now plug the definitions of q+
t,i and q−t,i into this expression to get

∆t(i) = − log
(

1 − q−t,i
(

1 − e � t·xi
))

− log
(

1 − q+
t,i

(

1 − e− � t·xi
))

.

Next we apply the inequality − log(1−α) ≥ α (which holds wherever log(1−α)
is defined):

∆t(i) ≥ q−t,i
(

1 − e � t·xi
)

+ q+
t,i

(

1 − e− � t·xi
)

. (3)

We rewrite the scalar product Λt · xi in a more convenient form,

Λt · xi =
n
∑

j=1

at,j

2
log
(

W+
t,j/W−

t,j

)

xi,j

=

n
∑

j=1

(at,j |xi,j |) sign(xi,j) log

(

√

W+
t,j/W−

t,j

)

. (4)

We recall the assumptions made on the vectors in A, namely that at and xi

comply with
∑n

j=1 at,j |xi,j | ≤ 1 and that at,j |xi,j | is non-negative. We now use

the fact that (1 − eα) is a concave function and is equal to zero at α = 0.
Replacing Λt · xi in Eq. (3) with the form given by Eq. (4) we get,

∆t(i) ≥ q−t,i
(

1 − e � t·xi
)

+ q+
t,i

(

1 − e− � t·xi
)

≥
n
∑

j=1

at,jq
−

t,i|xi,j |
(

1 − e
sign(xi,j) log

���
W+

t,j/W−

t,j �)

+

n
∑

j=1

at,jq
+
t,i|xi,j |

(

1 − e
−sign(xi,j) log

� �
W+

t,j/W−

t,j �) .

We now rewrite,

∆t(i) ≥
∑

j:xi,j>0

at,jq
−

t,i|xi,j |

1 −

√

√

√

√

W+
t,j

W−

t,j

+
∑

j:xi,j<0

at,jq
−

t,i|xi,j |

1 −

√

√

√

√

W−

t,j

W+
t,j

+
∑

j:xi,j>0

at,jq
+
t,i|xi,j |

1 −

√

√

√

√

W−

t,j

W+
t,j

+
∑

j:xi,j<0

at,jq
+
t,i|xi,j |

1 −

√

√

√

√

W+
t,j

W−

t,j

 .

Summing ∆t(i) over i and using the definition of the q’s and W ’s we finally get
that,

m
∑

i=1

∆t(i) ≥
n
∑

j=1

at,j

(

W−

t,j

(

1 −
√

W+
t,j/W−

t,j

)

+ W+
t,j

(

1 −
√

W−

t,j/W+
t,j

))

=

n
∑

j=1

at,j

(

√

W−

t,j −
√

W+
t,j

)2

.

This concludes the proof. ut
For the remainder of this section, we assume that the set of update templates

A is not degenerate, in the sense that every coordinate of λ is accessible. We
now show that the incorporation of a regularization term (Sec. 2) into the loss
function implies that the algorithm converges to the unique global minimizer
of the loss. First, it is easily verified that the regularization term guarantees
that the loss function is strictly convex and attains its unique minimum at the
point denoted λ?. Second, the regularization term guarantees that all admissible
values for λt lie within a compact set C. To see this, note that the initial loss
with regularization is

Loss(0, ν, S) = Loss(0, S) + ν Loss(0, Sreg) .

Denote the initial loss above by L0. Since the loss attained by the algorithm on
every iteration is non-increasing, the contribution of the regularization term to
the total loss cannot exceed L0/ν. Also, the regularization term for both the
exp-loss and the log-loss bounds the `∞ norm of λt by

‖λt‖∞ ≤ Loss(λt, Sreg) ≤ Loss(λt, ν, S)/ν ≤ L0/ν .

Therefore, the compact set C of admissible values for λt is {λ : ‖λ‖∞ ≤ L0/ν}.
The lower bound on the decrease in loss given in Thm. 1 can be thought of as a
function of the current regressor λt and is equal to zero only when the gradient
of the loss function equals zero, that is, at λ?.

Assume by contradiction that the sequence of regressors λ1, λ2, . . . does not
converge to λ?. An immediate consequence of this assumption is that there exists
γ > 0 such that an infinite subsequence of regressors λs1

, λs2
, . . . remains outside

of B(λ?, γ), the open ball of radius γ centered at λ?. The set C \B(λ?, γ) is also
compact. Therefore, the lower bound from Thm. 1 attains a minimum value over
C \ B(λ?, γ) at λ̃ 6= λ?. Denoting this minimum by µ, we conclude that µ is a
positive lower bound on the decrease in loss on each of the iterations s1, s2,
If the loss decreases by at least µ an unbounded number of times then it must
eventually become negative. We therefore get a contradiction since the loss is a
non-negative function. We thus conclude that the sequence λt converges to λ?.

So far, we have focused on the log-loss function. The algorithm described
in Fig. 2 can easily be adapted to minimize the exp-loss or the comb-loss by
simply redefining the overestimation and underestimation weights q− and q+.
For exp-loss regression problems, we define q−t,i = eδt,i and q+

t,i = e−δt,i .

Similarly, we can redefine q− and q+ to minimize the comb-loss. Recall that
the comb-loss function is defined by a pair of insensitivity parameters, ε1 and
ε2. To minimize the comb-loss, we define

q−t,i =
eδt,i−ε1

1 + eδt,i−ε1
+ eδt,i−ε2 q+

t,i =
e−δt,i−ε1

1 + e−δt,i−ε1
+ e−δt,i−ε2 .

All of the formal discussion given in this section carries over to the exp-loss and
the comb-loss cases with only minor technical adaptations necessary.

4 Additive Update for Batch Regression

In this section we describe a family of additive batch learning algorithms that
advance on each iteration in a direction which is a linear transformation of the
gradient of the loss. We term these algorithm additive update algorithms. These
algorithms bear a resemblance to the log-additive algorithms described in the
previous section, as do their proofs of progress. As in the previous section, we
first restrict the discussion to the log-loss and then outline the adaptation to the
exp-loss at the end of the section.

We again devise a template-based family of updates. This family includes
a parallel update which modifies all the elements of λ simultaneously and a
sequential update which updates a single element of λ on each iteration. We
denote the set of update templates by A and assume that every a ∈ A is a vector
in

� n
+. For each a ∈ A we require that

∑m
i=1

∑n
j=1 ajx

2
i,j ≤ 2.

The pseudo-code of the additive update algorithm is given in Fig. 3. Intu-
itively, on each iteration t, the algorithm computes the negative of the gradient
with respect to λt, denoted (Wt,1, . . . , Wt,n). It then selects the update template
at ∈ A which, as we shortly show in Thm. 2, guarantees a maximal drop in the
loss.

Input: Training set S = {(xi, yi) |xi ∈
� n, yi ∈

�
}m

i=1 ; Insensitivity ε ∈
�

+

Update templates A ⊆
� n

+ s.t. ∀a ∈ A
�

m

i=1

�
n

j=1
ajx

2
i,j ≤ 2

Initialize: � 1 = (0, 0, . . . , 0)

Iterate: For t = 1, 2, . . .

δt,i = � t·xi−yi q−t,i =
1

1 + e−δt,i+ε
q+

t,i =
1

1 + eδt,i+ε
(1 ≤ i ≤ m)

Wt,j =

n�
i=1

(q+

t,i − q−t,i) xi,j (1 ≤ j ≤ n)

at = argmax
a∈A

n�
j=1

ajW
2
t,j

Λt,j = at,jWt,j
(1 ≤ j ≤ n)� t+1 = � t + � t

Fig. 3. An additive update algorithm for minimizing the log-loss.

Theorem 2. Let {(xi, yi)}m
i=1 be a training set of instance-target pairs where

for all i in 1, . . . , m, xi ∈ � n and yi ∈ �
. Then using the notation defined in

the algorithm outlined in Fig. 3, on every iteration t the decrease in the log-loss,
denoted ∆t, satisfies

∆t = Loss(λt, S) − Loss(λt+1, S) ≥ 1

2

n
∑

j=1

at,jW
2
t,j .

Proof To prove the theorem we construct a parametric quadratic function
Q :

� → �
which bounds the log-loss along the direction Λ from λ. Concretely,

the function Q is defined as

Q � , � (α) = Loss(λ, S) + (∇Loss(λ, S) · Λ)
(

α − α2/2
)

. (5)

Next, we show that for all α, Q �
t, � t

(α) ≥ Loss(λt +αΛt, S) where Λt is defined
as in Fig. 3. For convenience, we define Γ (α) = Q �

t, � t
(α) − Loss(λt + αΛt, S)

and prove that Γ is a non-negative function.
By construction, we get that Γ (0) = 0. Since the derivative of Q �

t, � t
at zero

is equal to ∇Loss(λt, S) ·Λt, we get that the derivative of Γ at zero is also zero.
To prove that Γ is non-negative it remains to show that Γ is convex and thus
α = 0 attains its global minimum. To prove convexity it is sufficient to show that
the second derivative of Γ (denoted Γ ′′) is non-negative. Routine calculations
yield that,

Γ ′′(α) = −Λ · ∇Loss(λ, S) − ΛTHΛ , (6)

where H =
∑m

i=1 L
′′

log
(λ + αΛ)xix

T

i and L
′′

log
is the second derivative of the log-

loss. It is simple to show that this derivative is in [0, 1/2]. Plugging the value of

H into Eq. (6) we get that,

Γ ′′(α) ≥ −Λ · ∇Loss(λ, S) − 1

2

m
∑

i=1

(Λ · xi)
2 . (7)

Note that on the t’th iteration, the j’th element of Λt equals at,jWt,j where
Wt,j = −∇jLoss(λt, S). Therefore, we rewrite Eq. (7) as,

Γ ′′(α) ≥
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1

n
∑

j=1

at,jWt,jxi,j

2

=
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1

n
∑

j=1

√
at,j Wt,j

√
at,j xi,j

2

. (8)

Using Cauchy-Schwartz inequality (u · v ≤ ‖u‖‖v‖) we further bound Γ ′′ as,

Γ ′′(α) ≥
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1

n
∑

j=1

at,jW
2
t,j

(

n
∑

k=1

at,kx2
i,k

)

=

n
∑

j=1

at,jW
2
t,j

(

1 − 1

2

m
∑

i=1

n
∑

k=1

at,kx2
i,k

)

. (9)

Finally, we use the constraint
∑

i

∑n
k=1 at,kx2

i,k ≤ 2 which immediately implies
that Γ ′′(α) ≥ 0.

Summing up, we have shown that Loss(λt + αΛt, S) is upper bounded by
Q �

t, � t
(α). Therefore, Loss(λt+1, S) = Loss(λt + Λt, S) ≤ Q �

t, � t
(1), hence,

∆t ≥ Loss(λt, S) − Q �
t, � t

(1) =
1

2

n
∑

j=1

at,jW
2
t,j .

This concludes the proof. ut
The proof of convergence for the additive update algorithm follows identical

lines as the proof of convergence for the log-additive update algorithm. If the loss
function includes a regularization term then the lower bound discussed in Thm. 2
attains a value of zero only at λ?, the unique global optimum of Loss(λ, ν, S).
This fact implies convergence of λ to λ?.

To conclude this section, we briefly outline the adaptation of the additive
update algorithm to the exp-loss. Since the gradient of the exp-loss is itself
exponential, we cannot hope to minimize the exp-loss by straightforward gradient
descent. However, we can apply a gradient descent approach to the logarithm of
the exp-loss on the entire sample, as both the empirical exp-loss and its logarithm
share the same global optimum. For this modified loss, we can also apply the
proof technique of Thm. 2.

Online EG Online GD

Input: upper bound X
insensitivity parameter ε

Initialize: � 1 = (1

n
, . . . , 1

n
)

For t = 1, 2, . . .
Receive an example xt

Predict � t · xt

Receive target yt and update:
δt = � t · xt − yt

L
′

log(δt) = 1

1+e−δt+ε − 1

1+eδt+ε

βt = L
′

log(δt)/X2

For 1 ≤ j ≤ n :

λt+1,j =
λt,je

−βt xt,j

�
n
k=1

λt,ke
−βt xt,k

Input: upper bound R
insensitivity parameter ε

Initialize: � 1 = (0, 0, . . . , 0)

For t = 1, 2, . . .
Receive an example xt

Predict � t · xt

Receive target yt and update:
δt = � t · xt − yt

L
′

log(δt) = 1

1+e−δt+ε − 1

1+eδt+ε

βt = L
′

log(δt)/(2R2)� t+1 = � t − βtxt

Fig. 4. The EG and GD algorithms for online regression with the log-loss.

5 Online Regression Algorithms

In this section we describe online regression algorithms for the log-loss. We fol-
low the notation and techniques used in [9, 8, 1]. In online learning settings, we
observe a sequence of instance-target pairs, in rounds, one by one. On round t
we first receive an instance xt. Based on the current regressor, λt, we extend
a prediction λt · xt. We then receive the true target yt and suffer an instanta-
neous loss which is in our case, Llog(λt · xt − yt). Our goal is to suffer a small
cumulative loss. The learning algorithm employs an update rule which modifies
its current regressor after each round. We describe and analyze two online re-
gression algorithms that differ in the update rules that they employ. The first
is additive in the gradient of the loss and is thus called Gradient Descent (GD)
while the second is exponential in the gradient of the loss and is analogously
called Exponentiated Gradient (EG).

The GD algorithm: The pseudo-code of the algorithm is given on the right
hand side of Fig. 4. Note that the GD algorithm updates its current regressor,
λt, by subtracting the gradient of the loss function from it. The GD algorithm
assumes an upper bound R on the norm of the instances, that is, ‖xt‖2 ≤ R. In
the following analysis we give a bound on the cumulative loss for any number of
rounds. However, rather than bounding the loss per se we bound the cumulative
loss relative to the cumulative loss suffered by a fixed regressor µ. The bound
holds for any linear regressor µ and any number of rounds, hence we get that
the GD algorithm is competitive with the optimal (fixed) linear regressor for any
number of rounds. Formally, the following theorem states that the cumulative

loss attained by the GD algorithm is at most twice the cumulative loss of any
fixed linear regressor plus an additive constant.

Theorem 3. Let S = {(x1, y1), ..., (xT , yT)} be a sequence of instance-target
pairs such that ∀t : ‖xt‖2 ≤ R and let λ1, ..., λT be the regressors generated
by the GD online algorithm (Fig. 4) on the sequence. Then for any fixed linear
regressor µ ∈ � n we have

T
∑

t=1

Llog(λt · xt − yt) ≤ 2

T
∑

t=1

Llog(µ · xt − yt) + 2R2‖µ‖2
2 . (10)

The proof of the theorem is based on the following lemma that underscores an
invariant property of the update rule.

Lemma 1. Consider the setting of Thm. 3, then for each round t we have

Llog(λt · xt − yt) − 2Llog(µ · xt − yt) ≤ 2R2
(

‖λt − µ‖2
2 − ‖λt+1 − µ‖2

2

)

. (11)

The proof of the lemma is omitted due to the lack of space. Intuitively, the
lemma states that if the loss of GD on round t is greater than the loss of a
fixed regressor µ, then the algorithm updates its regressor so that λt+1 gets
closer to µ than λt. In contrast, if the loss of µ is greater than the loss of GD,
the algorithm may move its regressor away from µ. With Lemma 1 handy it is
almost immediate to prove Thm. 3.

Proof of Theorem 3: Summing Eq. (11) for t = 1, ..., T we get

T
∑

t=1

Llog(λt · xt−yt) − 2

T
∑

t=1

Llog(µ · xt−yt) ≤ 2R2
(

‖λ1 − µ‖2
2 − ‖λT+1 − µ‖2

2

)

≤ 2R2‖λ1 − µ‖2
2

= 2R2‖µ‖2
2 ,

where in the last equality we use the fact that the initial regressor, λ1, is the
zero vector. ut

The EG algorithm: The algorithm is described on the left hand side of Fig. 4.
The algorithm assumes that the regressor is in the probability simplex, λ ∈ � n

where � n = {µ : µ ∈ � n
+,
∑n

j=1 µj = 1}. We would like to note in passing that
following an analogous construction to the one employed in [9, 8], it is possible
to derive a generalized version of EG in which the elements of λ can be either
negative or positive, so long as the sum of their absolute values is less than
1. The EG algorithm assumes an upper bound, denoted X , on the difference
between the maximal value and minimal value of any two elements in all of
the instances it receives, X ≥ (maxj xt,j − minj xt,j). Since EG maintains a

regressor from the probability simplex, we measure the cumulative loss of the
EG algorithm relative to the cumulative loss achieved by any fixed regressor
from the probability simplex. The following theorem gives a bound on the loss
of the EG algorithm relative to the loss of any fixed regressor from � n.

Theorem 4. Let S = {(x1, y1), ..., (xT , yT)} be a sequence of instance-target
pairs, and let λ1, ..., λT be the regressors generated by the EG online algorithm
(Fig. 4) on the sequence. Then, for any fixed regressor µ ∈ � n we have

T
∑

t=1

Llog(λt · xt − yt) ≤ 4

3

T
∑

t=1

Llog(µ · xt − yt) +
4

3
X2DRE(µ, λ1) , (12)

where DRE(p, q) =
∑

j pj log(pj/qj) is the relative entropy.

The proof of the theorem is analogous to the proof of Thm. 3 and employs a
relative entropy based progress lemma.

6 Discussion

Log−loss
Exp−loss

Log−loss
Exp−loss

Fig. 5. A comparison of
log-loss and exp-loss.

We described a framework for solving regression
problems by a symmetrization of margin loss func-
tions. Our approach naturally lent itself to a shifted
and symmetric loss function which is approximately
zero in a pre-specified interval and can thus be used as
a smooth alternative to the ε-insensitive hinge loss.
We presented both batch and online algorithms for
solving the resulting regression problems. The up-
dates of the batch algorithms we presented have a log-
additive and an additive form. Our framework also
results in a new and very simple to implement regu-
larization scheme. As a byproduct, we tacitly derived
a new additive algorithm for boosting-based classi-
fication, which can be used in conjunction with the
newly introduced regularization scheme. There are
numerous extensions of this work. One of them is
the application of Thms. 1 and 2 as splitting crite-
ria for learning regression trees. Another interesting
direction is the marriage of the loss symmetrization
technique with other boosting related techniques such as drifting games [12, 4].

We conclude the paper with a synthetic example that underscores the differ-
ent merits of the log-loss and the exp-loss. In Fig. 5 we show results obtained for
both losses on two synthetic datasets. Each dataset was generated by uniformly
sampling from a univariate third degree polynomial. One-sided noise, generated
by taking minus the absolute value of a normal random variable, was added to
the first dataset (top plot in Fig. 5). Regressors were learned using both the
log-loss and the exp-loss, using a degree 3 polynomial kernel. The regressor ob-
tained by minimizing the log-loss is very close to the function used to generate

the data, demonstrating the robustness of the log-loss to noise. The regressor at-
tained by minimizing the exp-loss, however, attempts to minimize the maximal
discrepancy over the entire data set and therefore lies significantly below. The
other facet of this behavior is illustrated on the bottom plot of Fig. 5. For this
dataset, a third of the targets were shifted by a positive constant. The regressor
obtained by minimizing the exp-loss lies between the two groups of points and as
such approximately minimizes the `∞ regression loss on the sample. The regres-
sor found by minimizing the log-loss practically ignores the shifted third of the
sample. The log-loss shares the same asymptotic behavior as the absolute loss
and as such its solution resembles the median. The different merits of the two
losses can be exploited in more complex decision tasks such as ranking problems.
We leave this and the extensions mentioned above for future research.

Acknowledgements: We are in debt to Rob Schapire for making the connection
to regularization and for numerous comments. Part of this research was funded
by the Bi-national Science Foundation grant no. 1999-038.

References

1. Nicolò Cesa-Bianchi. Analysis of two gradient-based algorithms for on-line regres-
sion. Journal of Computer and System Sciences, 59(3):392–411, 1999.

2. M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Breg-
man distances. Machine Learning, 47(2/3):253–285, 2002.

3. N. Duffy and D. Helmbold. Leveraging for regression. In Proceedings of the Thir-

teenth Annual Conference on Computational Learning Theory. ACM, 2000.
4. Y. Freund and M. Opper. Drifting games and Brownian motion. Journal of

Computer and System Sciences, 64:113–132, 2002.
5. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-

sion: a statistical view of boosting. Annals of Statistics, 28(2):337–374, April 2000.
6. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-

tical Learning. Springer, 2001.
7. P.J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.
8. J. Kivinen, D.P Helmbold, and M. Warmuth. Relative loss bounds for single

neurons. IEEE Transactions on Neural Networks, 10(6):1291–1304, 1999.
9. J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent

for linear predictors. Information and Computation, 132(1):1–64, January 1997.
10. G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential

models. In Advances in Neural Information Processing Systems 14, 2001.
11. T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of

the IEEE, 78(9), 1990.
12. Robert E. Schapire. Drifting games. In Proceedings of the Twelfth Annual Confer-

ence on Computational Learning Theory, 1999.
13. A. Smola and B. Schölkopf. A tutorial on support vector regression. Technical

Report NC2-TR-1998-030, NeuroCOLT2, 1998.
14. Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

